Unsupervised Semantic Segmentation On Coco 7
Metrics
Accuracy
mIoU
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Accuracy | mIoU |
---|---|---|
Model 1 | 63.2 | 26.7 |
invariant-information-distillation-for | 21.8 | - |
expand-and-quantize-unsupervised-semantic | 53.8 | 25.8 |
unsupervised-semantic-segmentation-by-2 | 56.9 | 28.2 |
causal-unsupervised-semantic-segmentation | 74.9 | 41.9 |
picie-unsupervised-semantic-segmentation | 49.99 | 14.36 |
unsupervised-image-semantic-segmentation | 55.7 | - |
self-supervised-visual-representation-2 | 42.36 | - |
fully-self-supervised-learning-for-semantic | 40.38 | 15.69 |
boosting-unsupervised-semantic-segmentation | 57.8 | 25.1 |
picie-unsupervised-semantic-segmentation | 48.1 | - |
unsupervised-universal-image-segmentation | 63.9 | 30.2 |
expand-and-quantize-unsupervised-semantic | 53.8 | 25.8 |
rethinking-alignment-and-uniformity-in | 52.0 | - |
croc-cross-view-online-clustering-for-dense | - | 21.9 |
leveraging-hidden-positives-for-unsupervised | 57.2 | 24.6 |
causal-unsupervised-semantic-segmentation | 78.0 | 45.3 |
unsupervised-semantic-segmentation-by-2 | - | 24.5 |
boosting-unsupervised-semantic-segmentation | 57.9 | 29.7 |
vice-self-supervised-visual-concept | 64.8 | 21.77 |
dynaseg-a-deep-dynamic-fusion-method-for | 81.1 | 54.1 |
eagle-eigen-aggregation-learning-for-object | 64.2 | 27.2 |