HyperAI

Surface Normals Estimation On Nyu Depth V2 1

Metrics

% u003c 11.25
% u003c 22.5
% u003c 30
Mean Angle Error
RMSE

Results

Performance results of various models on this benchmark

Comparison Table
Model Name% u003c 11.25% u003c 22.5% u003c 30Mean Angle ErrorRMSE
idisc-internal-discretization-for-monocular63.879.885.614.622.8
metric3d-v2-a-versatile-monocular-geometric-168.884.989.812.019.2
estimating-and-exploiting-the-aleatoric62.279.385.214.923.5
polymax-general-dense-prediction-with-mask65.6682.2887.8313.0920.4
fine-tuning-image-conditional-diffusion61.4--16.2-
floors-are-flat-leveraging-semantics-for-real59.572.277.319.719.3