HyperAI

Speech Recognition On Timit

Metrics

Percentage error

Results

Performance results of various models on this benchmark

Comparison Table
Model NamePercentage error
the-pytorch-kaldi-speech-recognition-toolkit16.3
long-short-term-memory-and-learning-to-learn33.2
wav2vec-unsupervised-pre-training-for-speech14.7
wav2vec-2-0-a-framework-for-self-supervised8.3
the-pytorch-kaldi-speech-recognition-toolkit14.5
the-pytorch-kaldi-speech-recognition-toolkit14.2
quaternion-convolutional-neural-networks-for-119.64
the-pytorch-kaldi-speech-recognition-toolkit16.0
speech-recognition-with-deep-recurrent-neural17.7
the-pytorch-kaldi-speech-recognition-toolkit14.9
attention-model-for-articulatory-features20.4
light-gated-recurrent-units-for-speech16.7
Model 1316.5
the-pytorch-kaldi-speech-recognition-toolkit15.9
the-pytorch-kaldi-speech-recognition-toolkit16.6
segmental-recurrent-neural-networks-for-end17.3
the-pytorch-kaldi-speech-recognition-toolkit16.5
attention-based-models-for-speech-recognition17.6
Model 1916.7
vq-wav2vec-self-supervised-learning-of-111.6
light-gated-recurrent-units-for-speech14.9
online-and-linear-time-attention-by-enforcing20.1