HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
SMAC
Smac On Smac Mmm2 1
Smac On Smac Mmm2 1
Metrics
Median Win Rate
Results
Performance results of various models on this benchmark
Columns
Model Name
Median Win Rate
Paper Title
Repository
ACE
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QMIX
69
The StarCraft Multi-Agent Challenge
-
DIQL
85.23
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
96.88
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
QMIX
69
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
IQL
0
The StarCraft Multi-Agent Challenge
-
VDN
1
The StarCraft Multi-Agent Challenge
-
QMIX
92.44
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
89.2
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
68.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
0
The StarCraft Multi-Agent Challenge
-
DDN
97.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
95.11
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
96.88
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
0 of 14 row(s) selected.
Previous
Next
Smac On Smac Mmm2 1 | SOTA | HyperAI