HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
SMAC
Smac On Smac Corridor
Smac On Smac Corridor
Metrics
Average Score
Median Win Rate
Results
Performance results of various models on this benchmark
Columns
Model Name
Average Score
Median Win Rate
Paper Title
Repository
DIQL
19.68
91.62
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
19.08
81.25
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
VDN
19.47
85.34
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
-
0
The StarCraft Multi-Agent Challenge
-
DDN
20
95.4
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
QMIX
15.07
37.61
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
19.66
90.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
18.73
75.00
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
ACE
-
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QMIX
-
1
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
QMIX
-
1
The StarCraft Multi-Agent Challenge
-
IQL
19.42
84.87
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
0 of 13 row(s) selected.
Previous
Next
Smac On Smac Corridor | SOTA | HyperAI