HyperAI

Skeleton Based Action Recognition On Ntu Rgbd

Metrics

Accuracy (CS)
Accuracy (CV)

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracy (CS)Accuracy (CV)
spatial-temporal-graph-convolutional-networks-190.796.5
hierarchical-recurrent-neural-network-for-359.164.0
action-capsules-human-skeleton-action9096.3
actionlet-dependent-contrastive-learning-for84.388.8
temporal-extension-module-for-skeleton-based-191.096.5
a-comparative-review-of-recent-kinect-based8389
eleatt-rnn-adding-attentiveness-to-neurons-in80.788.4
independently-recurrent-neural-network-indrnn81.888.0
online-skeleton-based-action-recognition-with86.093.1
online-skeleton-based-action-recognition-with88.395
learning-multi-granular-spatio-temporal-graph92.096.6
a-new-representation-of-skeleton-sequences79.684.8
hypergraph-transformer-for-skeleton-based92.996.5
learning-shape-motion-representations-from82.8390.05
non-local-graph-convolutional-networks-for-188.595.1
channel-wise-topology-refinement-graph92.496.8
spatio-temporal-lstm-with-trust-gates-for-3d69.277.7
skeleton-based-action-recognition-with-283.289.3
hyperbolic-self-paced-learning-for-self89.195.2
online-skeleton-based-action-recognition-with86.392.4
skeleton-based-action-recognition-with-multi89.496.0
skeletal-quads-human-action-recognition-using38.641.4
jointly-learning-heterogeneous-features-for-160.265.2
skelemotion-a-new-representation-of-skeleton76.584.7
multi-scale-spatial-temporal-convolutional92.697.8
an-end-to-end-spatio-temporal-attention-model73.481.2
an-attention-enhanced-recurrent-graph85.193.2
part-based-graph-convolutional-network-for87.593.2
degcn-deformable-graph-convolutional-networks93.697.4
skeleton-based-action-recognition-with-multi90.096.2
skeleton-based-action-recognition-with-184.892.4
human-action-recognition-by-representing-3d-150.152.8
online-skeleton-based-action-recognition-with88.994.8
disentangling-and-unifying-graph-convolutions91.596.2
motionbert-unified-pretraining-for-human93.097.2
making-the-invisible-visible-action86.891.6
view-adaptive-recurrent-neural-networks-for79.287.6
global-context-aware-attention-lstm-networks76.1084.00
ensemble-deep-learning-for-skeleton-based74.6081.25
hyperbolic-self-paced-learning-for-self86.593.5
hulk-a-universal-knowledge-translator-for94-
enhanced-skeleton-visualization-for-view80.087.2
predictively-encoded-graph-convolutional85.693.4
step-catformer-spatial-temporal-effective93.297.3
online-skeleton-based-action-recognition-with8693.4
spatial-temporal-graph-convolutional-networks-190.195.1
centrality-graph-convolutional-networks-for90.396.4
revisiting-skeleton-based-action-recognition94.197.1
dynamic-gcn-context-enriched-topology91.596.0
learning-skeletal-graph-neural-networks-for91.696.7
adaptive-rnn-tree-for-large-scale-human-174.683.2
hierarchically-decomposed-graph-convolutional93.497.2
action-recognition-for-privacy-preserving89.5794.90
an-attention-enhanced-graph-convolutional89.295.0
generalized-graph-convolutional-networks-for87.594.3
skeleton-based-relational-modeling-for-action80.788.8
hulk-a-universal-knowledge-translator-for94.3-
self-attention-network-for-skeleton-based87.292.7
decoupled-spatial-temporal-attention-network91.596.4
richlt-activated-graph-convolutional-network85.893.0
richly-activated-graph-convolutional-network87.393.6
tensor-representations-for-action-recognition91.5694.75
ntu-rgbd-a-large-scale-dataset-for-3d-human62.9370.27
spatial-temporal-transformer-network-for89.996.1
llms-are-good-action-recognizers9598.4
context-aware-cross-attention-for-skeleton84.2389.27
adding-attentiveness-to-the-neurons-in79.887.1
skeleton-based-action-recognition-with89.194.9
infogcn-representation-learning-for-human93.097.1
investigation-of-different-skeleton-features-82.31
vertex-feature-encoding-and-hierarchical85.392.8
bayesian-graph-convolution-lstm-for-skeleton81.889.0
skeleton-based-action-recognition-using-185.0-
psumnet-unified-modality-part-streams-are-all92.996.7
action-recognition-with-multi-stream-motion92.996.9
constructing-stronger-and-faster-baselines89.994.7
autogcn-towards-generic-human-activity88.395.5
feedback-graph-convolutional-network-for90.296.3
skateformer-skeletal-temporal-transformer-for93.597.8
leveraging-third-order-features-in-skeleton91.796.4
temporal-decoupling-graph-convolutional92.896.8
pose-refinement-graph-convolutional-network85.291.7
graph-contrastive-learning-for-skeleton-based93.197.0
masked-motion-predictors-are-strong-3d-action93.197.5
richlt-activated-graph-convolutional-network85.993.5
three-stream-convolutional-neural-network88.693.7
spatial-temporal-graph-convolutional-networks-181.588.3
usdrl-unified-skeleton-based-dense87.193.2
skeletonnet-mining-deep-part-features-for-3-d75.981.2
spatial-residual-layer-and-dense-connection89.5895.74
constructing-stronger-and-faster-baselines92.196.1
stronger-faster-and-more-explainable-a-graph90.996
spatial-temporal-graph-convolutional-networks-186.693.2
maskclr-attention-guided-contrastive-learning93.997.3
dg-stgcn-dynamic-spatial-temporal-modeling93.297.5
a-comparative-review-of-recent-kinect-based83.3688.84
a-fine-to-coarse-convolutional-neural-network79.684.6
3d-cnns-on-distance-matrices-for-human-action82.089.5
spatio-temporal-lstm-with-trust-gates-for-3d61.7075.50
actional-structural-graph-convolutional86.894.2
skeleton-based-action-recognition-via92.897.0
pyskl-towards-good-practices-for-skeleton92.697.4
memory-attention-networks-for-skeleton-based82.6793.22
skeleton-based-action-recognition-with-shift90.796.5
revealing-key-details-to-see-differences-a93.897.8
deep-independently-recurrent-neural-network86.7093.97
shap-mix-shapley-value-guided-mixing-for-long93.797.1
mix-dimension-in-poincare-geometry-for-3d89.796
ntu-rgbd-a-large-scale-dataset-for-3d-human60.767.3
semantics-guided-neural-networks-for89.094.5
skeleton-based-action-recognition-with-489.996.1
joint-mixing-data-augmentation-for-skeleton93.797.2
symbiotic-graph-neural-networks-for-3d90.196.4
blockgcn-redefine-topology-awareness-for93.197.0
a-semantics-guided-graph-convolutional86.294.2
constructing-stronger-and-faster-baselines90.995.5
learning-human-pose-models-from-synthesized80.986.1
modeling-temporal-dynamics-and-spatial71.379.5
online-skeleton-based-action-recognition-with84.192.6
skeleton-image-representation-for-3d-action73.380.3
msa-gcn-exploiting-multi-scale-temporal93.697.4
co-occurrence-feature-learning-from-skeleton86.591.1
online-skeleton-based-action-recognition-with86.393.8
language-knowledge-assisted-representation93.597.2
view-adaptive-neural-networks-for-high89.495.0
spatial-temporal-graph-attention-network-for92.897.3
multi-modality-co-learning-for-efficient-193.597.4
focusing-and-diffusion-bidirectional90.396.3
pyskl-towards-good-practices-for-skeleton91.498.3
pgcn-tca-pseudo-graph-convolutional-network88.093.6
language-supervised-training-for-skeleton92.997
interpretable-3d-human-action-analysis-with74.383.1
learning-graph-convolutional-network-for89.495.7