Sentiment Analysis On Yelp Binary
Metrics
Error
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Error |
---|---|
disconnected-recurrent-neural-networks-for | 2.73 |
supervised-and-semi-supervised-text | 2.9 |
unsupervised-data-augmentation-1 | 1.89 |
how-to-fine-tune-bert-for-text-classification | 1.81 |
universal-language-model-fine-tuning-for-text | 2.16 |
character-level-convolutional-networks-for | 4.88 |
joint-embedding-of-words-and-labels-for-text | 4.69 |
bag-of-tricks-for-efficient-text | 4.3 |
learning-to-remember-more-with-less | 3.60 |
deep-pyramid-convolutional-neural-networks | 2.64 |
squeezed-very-deep-convolutional-neural | 4.74 |
compositional-coding-capsule-network-with-k | 3.52 |
gpu-kernels-for-block-sparse-weights | 3.27 |
how-to-fine-tune-bert-for-text-classification | 1.92 |
sliced-recurrent-neural-networks | 3.96 |
unsupervised-data-augmentation-1 | 2.05 |
heavy-tailed-representations-text-polarity | 1.86 |
baseline-needs-more-love-on-simple-word | 4.19 |
learning-context-sensitive-convolutional | 3.89 |
xlnet-generalized-autoregressive-pretraining | 1.37 |