HyperAI

Sentiment Analysis On Sst 5 Fine Grained

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracy
an-algorithm-for-routing-capsules-in-all58.5
bp-transformer-modelling-long-range-context52.71
deep-contextualized-word-representations54.7
emo2vec-learning-generalized-emotion43.6
message-passing-attention-networks-for49.68
a-la-carte-embedding-cheap-but-effective54.6
improved-semantic-representations-from-tree51.0
a-c-lstm-neural-network-for-text49.2
recursive-deep-models-for-semantic45.7
an-algorithm-for-routing-vectors-in-sequences59.8
less-grammar-more-features49.6
baseline-needs-more-love-on-simple-word46.1
exploring-joint-neural-model-for-sentence44.82
a-multi-sentiment-resource-enhanced-attention51.4
self-explaining-structures-improve-nlp-models59.1
learned-in-translation-contextualized-word53.7
leveraging-multi-grained-sentiment-lexicon50.4
convolutional-neural-networks-with-recurrent53.4
lm-cppf-paraphrasing-guided-data-augmentation54.9
cell-aware-stacked-lstms-for-modeling53.6
emo2vec-learning-generalized-emotion41.6
recursive-deep-models-for-semantic44.4
sentiment-analysis-by-capsules49.3
fine-grained-sentiment-classification-using55.5
improved-sentence-modeling-using-suffix56.2
fine-grained-sentiment-classification-using53.2
19060009549.14
all-but-the-top-simple-and-effective45.02
star-transformer53.0