Semi Supervised Image Classification
Semi-supervised image classification is a technique that combines labeled and unlabeled data to improve classification performance. This method enhances the model's generalization and accuracy by leveraging a large amount of unannotated images, effectively alleviating the issue of insufficient labeled data, and has significant application value in the field of computer vision.
Caltech-101
Caltech-101, 202 Labels
Caltech-256
Caltech-256, 1024 Labels
cifar-10, 10 Labels
BOSS
CIFAR-10, 100 Labels
SimCLR-kmediods-PAWS
CIFAR-10, 100 Labels (OpenSet, 6/4)
CIFAR-10, 1000 Labels
MixMatch
CIFAR-10, 20 Labels
CIFAR-10, 2000 Labels
MixMatch
CIFAR-10, 250 Labels
CIFAR-10 (250 Labels, ImageNet-100 Unlabeled)
CIFAR-10, 30 Labels
CIFAR-10, 40 Labels
FreeMatch
CIFAR-10, 400 Labels (OpenSet, 6/4)
UnMixMatch
CIFAR-10, 4000 Labels
CIFAR-10 (4000 Labels, ImageNet-100 Unlabeled)
CIFAR-10, 50 Labels (OpenSet, 6/4)
CIFAR-10, 500 Labels
MixMatch
CIFAR-10, 80 Labels
SimCLR (CoMatch)
CIFAR-100, 1000 Labels
EnAET
cifar-100, 10000 Labels
CCSSL(FixMatch)
CIFAR-100 (10000 Labels, ImageNet-100 Unlabeled)
CIFAR-100, 200 Labels
CIFAR-100 (250 Labels, ImageNet-100 Unlabeled)
CCSSL
CIFAR-100, 2500 Labels
FlexMatch
CIFAR-100, 400 Labels
SemiReward
CIFAR-100 (400 Labels, ImageNet-100 Unlabeled)
CIFAR-100, 4000 Labels
UPS (CNN-13)
CIFAR-100, 5000 Labels
CIFAR-100, 5000Labels
EnAET
cifar10, 250 Labels
ReMixMatch
DeepWeeds, 99 Labels
EuroSAT, 100 Labels
EuroSAT, 20 Labels
SimCLR-kmediods-PAWS
ImageNet - 0.2% labeled data
DebiasPL (ResNet-50)
ImageNet - 1% labeled data
REACT (ViT-Large)
ImageNet - 10% labeled data
Meta Co-Training
Imagenette, 100 Labels
Imagenette, 20 Labels
Mini-ImageNet, 1000 Labels
MutexMatch
Mini-ImageNet, 10000 Labels
FeatMatch
Mini-ImageNet, 4000 Labels
SimPLE
Salinas
Res-CP
STL-10
EnAET
STL-10, 1000 Labels
Semi-MMDC
STL-10 (1000 Labels, ImageNet-100 Unlabeled)
STL-10, 40 Labels
RelationMatch
STL-10, 5000 Labels
MixMatch
SVHN, 1000 labels
Meta Pseudo Labels (WRN-28-2)
SVHN (1000 Labels, ImageNet-100 Unlabeled)
SVHN, 2000 Labels
MixMatch
SVHN, 250 Labels
EnAET
SVHN (250 Labels, ImageNet-100 Unlabeled)
SVHN, 40 Labels
ShrinkMatch
SVHN (40 Labels, ImageNet-100 Unlabeled)
SVHN, 4000 Labels
MixMatch
SVHN, 500 Labels
Triple-GAN-V2 (CNN-13)