HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Semantic Segmentation
Semantic Segmentation On Vaihingen
Semantic Segmentation On Vaihingen
Metrics
mIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
mIoU
Paper Title
CMX
82.87
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
LMFNet-2 (
82.49
LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing
SA-Gate
81.03
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
V-FuseNet
79.56
Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks
UnetFormer
77.24
UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery
SegFormer-B1
76.92
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
PSPNet
76.79
Pyramid Scene Parsing Network
HRNet-48
76.75
Deep High-Resolution Representation Learning for Visual Recognition
SegFormer-B2
76.69
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
HRNet-18
75.90
Deep High-Resolution Representation Learning for Visual Recognition
SegFormer-B0
75.57
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
FPN
74.86
Feature Pyramid Networks for Object Detection
DeepLabV3+
72.90
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
0 of 13 row(s) selected.
Previous
Next
Semantic Segmentation On Vaihingen | SOTA | HyperAI