HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Semantic Segmentation
Semantic Segmentation On Syn Udtiri
Semantic Segmentation On Syn Udtiri
Metrics
IoU
Results
Performance results of various models on this benchmark
Columns
Model Name
IoU
Paper Title
RoadFormer+ (B)
94.11
RoadFormer+: Delivering RGB-X Scene Parsing through Scale-Aware Information Decoupling and Advanced Heterogeneous Feature Fusion
RoadFormer (L)
93.51
RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
CMX
93.31
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
RoadFormer (B)
93.06
RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
SNE-RoadSeg
92.10
SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection
CAINet
91.77
Context-Aware Interaction Network for RGB-T Semantic Segmentation
DFormer
90.88
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
RTFNet
90.50
RTFNet: RGB-Thermal Fusion Network for Semantic Segmentation of Urban Scenes
MFNet
87.70
MFNet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes
OFF-Net
83.80
ORFD: A Dataset and Benchmark for Off-Road Freespace Detection
0 of 10 row(s) selected.
Previous
Next
Semantic Segmentation On Syn Udtiri | SOTA | HyperAI