HyperAI

Semantic Segmentation On Stanford2D3D 1

Metrics

mAcc
mIoU

Results

Performance results of various models on this benchmark

Comparison Table
Model NamemAccmIoU
panoformer-panorama-transformer-for-indoor64.548.9%
sgat4pass-spherical-geometry-aware-56.4%
interpolated-selectionconv-for-spherical-41.4%
bending-reality-distortion-aware-transformers-52.1%
single-frame-semantic-segmentation-using63.9652.87%
spherical-cnns-on-unstructured-grids54.6538.3%
sgat4pass-spherical-geometry-aware-55.3%
tangent-images-for-mitigating-spherical65.245.6%
spin-weighted-spherical-cnns-43.4%
gauge-equivariant-convolutional-networks-and55.939.4%
single-frame-semantic-segmentation-using68.7958.24%
bending-reality-distortion-aware-transformers-53.0%
distortion-aware-convolutional-filters-for-34.6%
single-frame-semantic-segmentation-using70.6860.6%
single-frame-semantic-segmentation-using69.0359.43%
complementary-bi-directional-feature65.652.2%
hohonet-360-indoor-holistic-understanding65.052.0%
behind-every-domain-there-is-a-shift-adapting-52.3%
single-frame-semantic-segmentation-using68.5755.49%
bending-reality-distortion-aware-transformers-51.2%
bending-reality-distortion-aware-transformers-50.8%
orientation-aware-semantic-segmentation-on58.643.3%
bending-reality-distortion-aware-transformers-48.1%
fredsnet-joint-monocular-depth-and-semantic63.146.1%
behind-every-domain-there-is-a-shift-adapting-54.0%