HyperAI

Scene Text Recognition On Icdar2015

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracy
scene-text-recognition-with-permuted89.6±0.3
decoupled-attention-network-for-text74.5
show-attend-and-read-a-simple-and-strong69.2
aon-towards-arbitrarily-oriented-text73.0
aster-an-attentional-scene-text-recognizer76.1
dtrocr-decoder-only-transformer-for-optical93.5
a-glyph-driven-topology-enhancement-network87.6
textscanner-reading-characters-in-order-for79.4
clip4str-a-simple-baseline-for-scene-text-191.4
what-is-wrong-with-scene-text-recognition71.8
clip4str-a-simple-baseline-for-scene-text-190.8
look-back-again-dual-parallel-attention85.5
visual-semantics-allow-for-textual-reasoning-187.3
clip4str-a-simple-baseline-for-scene-text-190.6
an-empirical-study-of-scaling-law-for-ocr92.6
multi-granularity-prediction-for-scene-text90.9
vision-transformer-for-fast-and-efficient72.6
cstr-a-classification-perspective-on-scene81.6
safl-a-self-attention-scene-text-recognizer-177.5
why-you-should-try-the-real-data-for-the80.2
multi-modal-text-recognition-networks86.6
diffusionstr-diffusion-model-for-scene-text86
seed-semantics-enhanced-encoder-decoder80
on-recognizing-texts-of-arbitrary-shapes-with79.0
representation-and-correlation-enhanced82.2
context-perception-parallel-decoder-for-scene91.7
cdistnet-perceiving-multi-domain-character86.25