HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Robust 3D Semantic Segmentation
Robust 3D Semantic Segmentation On Nuscenes C
Robust 3D Semantic Segmentation On Nuscenes C
Metrics
mean Corruption Error (mCE)
Results
Performance results of various models on this benchmark
Columns
Model Name
mean Corruption Error (mCE)
Paper Title
FIDNet
122.42%
FIDNet: LiDAR Point Cloud Semantic Segmentation with Fully Interpolation Decoding
PolarNet
115.09%
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
CENet
112.79%
CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for Autonomous Driving
Cylinder3D (spconv)
111.84%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
WaffleIron
106.73%
Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
SPVCNN-18
106.65%
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
Cylinder3D (torchsparse)
105.56%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
MinkUNet-18
100.00%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
2DPASS
98.56%
2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds
SPVCNN-34
97.45%
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
MinkUNet-34
96.37%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
GFNet
92.55%
GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation
0 of 12 row(s) selected.
Previous
Next