HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Robust 3D Semantic Segmentation
Robust 3D Semantic Segmentation On
Robust 3D Semantic Segmentation On
Metrics
mean Corruption Error (mCE)
Results
Performance results of various models on this benchmark
Columns
Model Name
mean Corruption Error (mCE)
Paper Title
Repository
PolarNet
118.56%
PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation
-
SqueezeSegV2 (64x2048)
152.45%
SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud
-
KPConv
99.54%
KPConv: Flexible and Deformable Convolution for Point Clouds
-
2DPASS
106.14%
2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds
-
MinkUNet-18
100.00%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
-
PIDS-1.2x
104.13%
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
-
Cylinder3D (torchsparse)
103.13%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
-
CPGNet
107.34%
CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic Segmentation
-
PIDS-2.0x
101.20%
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
-
GFNet
108.68%
GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation
-
SPVCNN-34
99.16%
Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution
-
CENet (64x2048)
103.41%
CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for Autonomous Driving
-
RPVNet
111.74%
RPVNet: A Deep and Efficient Range-Point-Voxel Fusion Network for LiDAR Point Cloud Segmentation
-
WaffleIron
109.54%
Using a Waffle Iron for Automotive Point Cloud Semantic Segmentation
-
FIDNet (64x2048)
113.81%
FIDNet: LiDAR Point Cloud Semantic Segmentation with Fully Interpolation Decoding
-
Cylinder3D (spconv)
103.25%
Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
-
MinkUNet-34
100.61%
4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
-
SalsaNext (64x2048)
116.14%
SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving
-
SqueezeSeg (64x2048)
164.87%
SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud
-
RangeNet-21 (64x2048)
136.33%
RangeNet++: Fast and Accurate LiDAR Semantic Segmentation
0 of 22 row(s) selected.
Previous
Next