HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Rgb D Salient Object Detection
Rgb D Salient Object Detection On Stere
Rgb D Salient Object Detection On Stere
Metrics
Average MAE
S-Measure
Results
Performance results of various models on this benchmark
Columns
Model Name
Average MAE
S-Measure
Paper Title
Repository
UC-Net
0.039
90.3
UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders
DASNet
0.037
91.0
Is Depth Really Necessary for Salient Object Detection?
CoLANet
0.039
90.8
CoLA: Conditional Dropout and Language-driven Robust Dual-modal Salient Object Detection
BTS-Net
0.038
91.5
BTS-Net: Bi-directional Transfer-and-Selection Network For RGB-D Salient Object Detection
UCNet-CVAE
0.039
89.8
Uncertainty Inspired RGB-D Saliency Detection
JL-DCF
0.042
90.5
JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection
BBS-Net
0.041
90.8
Bifurcated backbone strategy for RGB-D salient object detection
JL-DCF*
0.039
91.1
Siamese Network for RGB-D Salient Object Detection and Beyond
D3Net
0.046
89.9
Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks
CPFP
0.051
87.9
Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection
SPSN
0.035
90.7
SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection
DFormer-L
0.030
92.3
DFormer: Rethinking RGBD Representation Learning for Semantic Segmentation
BiANet
0.043
90.4
Bilateral Attention Network for RGB-D Salient Object Detection
UCNet-ABP
0.037
90.4
Uncertainty Inspired RGB-D Saliency Detection
0 of 14 row(s) selected.
Previous
Next