HyperAI

Question Answering On Storycloze

Metrics

Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAccuracy
efficient-language-modeling-with-sparse-all73.3
crosslingual-generalization-through-multitask96.3
efficient-language-modeling-with-sparse-all67.9
massive-language-models-can-be-accurately76.19
the-cot-collection-improving-zero-shot-and94.5
finetuned-language-models-are-zero-shot94.7
massive-language-models-can-be-accurately78.87
language-models-are-few-shot-learners72.4
finetuned-language-models-are-zero-shot93.4
massive-language-models-can-be-accurately77.02
unimelb-at-semeval-2016-tasks-4a-and-4b-an78.7
improving-language-understanding-by86.5
knowledge-in-context-towards-knowledgeable94.40
a-simple-and-effective-approach-to-the-story76.5
efficient-language-modeling-with-sparse-all74.7
improving-machine-reading-comprehension-with88.3
story-comprehension-for-predicting-what77.6
massive-language-models-can-be-accurately79.82
efficient-language-modeling-with-sparse-all64.7
efficient-language-modeling-with-sparse-all61.4
massive-language-models-can-be-accurately47.10
guess-the-instruction-making-language-models95.88
exploring-the-benefits-of-training-expert86.33