Prompt Engineering On Imagenet V2
Metrics
Top-1 accuracy %
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Top-1 accuracy % |
---|---|
conditional-prompt-learning-for-vision | 64.07 |
maple-multi-modal-prompt-learning | 64.07 |
Model 3 | 63.8 |
learning-transferable-visual-models-from | 60.83 |
learning-hierarchical-prompt-with-structured | 65.25 |
mmrl-multi-modal-representation-learning-for | 64.47 |
hpt-hierarchically-prompting-vision-language | 65.31 |
self-regulating-prompts-foundational-model | 64.35 |