HyperAI

Panoptic Segmentation On Mapillary Val

Metrics

PQ
PQst
PQth
mIoU

Results

Performance results of various models on this benchmark

Comparison Table
Model NamePQPQstPQthmIoU
scaling-wide-residual-networks-for-panoptic44.851.939.360.0
efficientps-efficient-panoptic-segmentation40.6---
fully-convolutional-networks-for-panoptic36.9-32.9-
oneformer-one-transformer-to-rule-universal46.754.940.561.7
panoptic-deeplab-a-simple-strong-and-fast40.5---
panoptic-segmentation-with-a-joint-semantic17.6---
fully-convolutional-networks-for-panoptic-42.3--
adaptis-adaptive-instance-selection-network40.3--56.8
axial-deeplab-stand-alone-axial-attention-for41.151.333.458.4
hierarchical-multi-scale-attention-for17.6---
fully-convolutional-networks-for-panoptic45.752.140.8-
oneformer-one-transformer-to-rule-universal46.454.040.661.6
intra-batch-supervision-for-panoptic-142.252.034.9-