HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Panoptic Segmentation
Panoptic Segmentation On Mapillary Val
Panoptic Segmentation On Mapillary Val
Metrics
PQ
PQst
PQth
mIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
PQ
PQst
PQth
mIoU
Paper Title
OneFormer (DiNAT-L, single-scale)
46.7
54.9
40.5
61.7
OneFormer: One Transformer to Rule Universal Image Segmentation
OneFormer (ConvNeXt-L, single-scale)
46.4
54.0
40.6
61.6
OneFormer: One Transformer to Rule Universal Image Segmentation
Panoptic FCN* (Swin-L, single-scale)
45.7
52.1
40.8
-
Fully Convolutional Networks for Panoptic Segmentation
Panoptic-DeepLab (SWideRNet-(1, 1, 4.5), multi-scale)
44.8
51.9
39.3
60.0
Scaling Wide Residual Networks for Panoptic Segmentation
Mask2Former + Intra-Batch Supervision (ResNet-50)
42.2
52.0
34.9
-
Intra-Batch Supervision for Panoptic Segmentation on High-Resolution Images
Axial-DeepLab-L (multi-scale)
41.1
51.3
33.4
58.4
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
EfficientPS
40.6
-
-
-
EfficientPS: Efficient Panoptic Segmentation
Panoptic-DeepLab (X71)
40.5
-
-
-
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
AdaptIS (ResNeXt-101)
40.3
-
-
56.8
AdaptIS: Adaptive Instance Selection Network
Panoptic FCN* (ResNet-FPN)
36.9
-
32.9
-
Fully Convolutional Networks for Panoptic Segmentation
JSIS-Net (ResNet-50)
17.6
-
-
-
Panoptic Segmentation with a Joint Semantic and Instance Segmentation Network
HRNet-OCR (Hierarchical Multi-Scale Attention)
17.6
-
-
-
Hierarchical Multi-Scale Attention for Semantic Segmentation
Panoptic FCN* (ResNet-50-FPN)
-
42.3
-
-
Fully Convolutional Networks for Panoptic Segmentation
0 of 13 row(s) selected.
Previous
Next
Panoptic Segmentation On Mapillary Val | SOTA | HyperAI