HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Panoptic Segmentation
Panoptic Segmentation On Coco Test Dev
Panoptic Segmentation On Coco Test Dev
Metrics
PQ
PQst
PQth
Results
Performance results of various models on this benchmark
Columns
Model Name
PQ
PQst
PQth
Paper Title
Mask DINO (single scale)
59.5
-
-
Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation
kMaX-DeepLab (single-scale)
58.5
49.0
64.8
kMaX-DeepLab: k-means Mask Transformer
Mask2Former (Swin-L)
58.3
48.1
65.1
Masked-attention Mask Transformer for Universal Image Segmentation
Panoptic SegFormer (Swin-L)
56.2
47.0
62.3
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic SegFormer (PVTv2-B5)
55.8
46.5
61.9
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
CMT-DeepLab (single-scale)
55.7
46.8
61.6
CMT-DeepLab: Clustering Mask Transformers for Panoptic Segmentation
K-Net (Swin-L)
55.2
46.2
61.2
K-Net: Towards Unified Image Segmentation
MaskConver (ResNet50, single-scale)
53.6
58.9
45.6
MaskConver: Revisiting Pure Convolution Model for Panoptic Segmentation
MaskFormer (Swin-L)
53.3
44.5
59.1
Per-Pixel Classification is Not All You Need for Semantic Segmentation
Panoptic FCN* (Swin-L)
52.7
-
59.4
Fully Convolutional Networks for Panoptic Segmentation
REFINE (ResNeXt-101-DCN)
51.5
39.2
59.6
REFINE: Prediction Fusion Network for Panoptic Segmentation
MaX-DeepLab-L (single-scale)
51.3
42.4
57.2
MaX-DeepLab: End-to-End Panoptic Segmentation with Mask Transformers
Panoptic SegFormer (ResNet-101)
50.9
43.0
56.2
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
Panoptic SegFormer (ResNet-50)
50.2
42.4
55.3
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers
DetectoRS (ResNeXt-101-64x4d, multi-scale)
50
37.2
58.5
DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution
REFINE (ResNet-101-DCN)
49.6
37.7
57.5
REFINE: Prediction Fusion Network for Panoptic Segmentation
Ada-Segment (ResNet-101-DCN)
48.5
37.6
55.7
Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation
SpatialFlow(ResNet-101-FPN)
48.5
37.9
55.5
SpatialFlow: Bridging All Tasks for Panoptic Segmentation
K-Net (R101-FPN-DCN)
48.3
39.7
54
K-Net: Towards Unified Image Segmentation
SOGNet (ResNet-101-FPN)
47.8
-
-
SOGNet: Scene Overlap Graph Network for Panoptic Segmentation
0 of 38 row(s) selected.
Previous
Next
Panoptic Segmentation On Coco Test Dev | SOTA | HyperAI