HyperAI

Panoptic Segmentation On Coco Minival

Metrics

AP
PQ

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAPPQ
focal-modulation-networks48.457.9
a-simple-framework-for-open-vocabulary53.259.5
visual-attention-network-58.2
fully-convolutional-networks-for-panoptic-44.3
per-pixel-classification-is-not-all-you-need-52.7
k-means-mask-transformer-58.0
end-to-end-object-detection-with-transformers3345.1
axial-deeplab-stand-alone-axial-attention-for-43.9
end-to-end-object-detection-with-transformers39.744.1
k-means-mask-transformer-58.1
mask-dino-towards-a-unified-transformer-based-150.959.4
oneformer-one-transformer-to-rule-universal52.060.0
axial-deeplab-stand-alone-axial-attention-for--
k-means-mask-transformer-57.9
dilated-neighborhood-attention-transformer49.258.5
oneformer-one-transformer-to-rule-universal49.057.9
hyperseg-towards-universal-visual-61.2
axial-deeplab-stand-alone-axial-attention-for-43.4
oneformer-one-transformer-to-rule-universal49.258.0
vision-transformer-adapter-for-dense48.958.4
fully-convolutional-networks-for-panoptic--
panoptic-segformer-55.8
max-deeplab-end-to-end-panoptic-segmentation-51.1
masked-attention-mask-transformer-for48.657.8
hierarchical-open-vocabulary-universal-image-1-58.1
cmt-deeplab-clustering-mask-transformers-for-1-55.3
resnest-split-attention-networks-47.9
panoptic-segformer-50.6