HyperAI

Open Vocabulary Semantic Segmentation On 5

Metrics

mIoU

Results

Performance results of various models on this benchmark

Comparison Table
Model NamemIoU
learning-to-generate-text-grounded-mask-for83.2
maskclip-a-mask-based-clip-fine-tuning96.8
open-vocabulary-segmentation-with-semantic97.2
prompt-pre-training-with-twenty-thousand-189.4
open-vocabulary-semantic-segmentation-with94.5
open-vocabulary-semantic-segmentation-with-496.4
open-vocabulary-panoptic-segmentation-with-184.6
decoupling-zero-shot-semantic-segmentation-
tagalign-improving-vision-language-alignment87.9
2112-14757-
learning-mask-aware-clip-representations-for92.1
open-vocabulary-semantic-segmentation-with-272.3
hyperseg-towards-universal-visual92.1
collaborative-vision-text-representation96.5
in-defense-of-lazy-visual-grounding-for-open82.5
silc-improving-vision-language-pretraining97.6
convolutions-die-hard-open-vocabulary-195.4
cat-seg-cost-aggregation-for-open-vocabulary97.0
Model 1992.1