HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Open Vocabulary Semantic Segmentation
Open Vocabulary Semantic Segmentation On 3
Open Vocabulary Semantic Segmentation On 3
Metrics
mIoU
Results
Performance results of various models on this benchmark
Columns
Model Name
mIoU
Paper Title
Repository
ODISE
11.1
Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models
EBSeg-L
13.7
Open-Vocabulary Semantic Segmentation with Image Embedding Balancing
MaskCLIP++
16.8
MaskCLIP++: A Mask-Based CLIP Fine-tuning Framework for Open-Vocabulary Image Segmentation
CAT-Seg
16.0
CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation
SAN
13.7
Side Adapter Network for Open-Vocabulary Semantic Segmentation
-
MaskCLIP
8.2
Open-Vocabulary Universal Image Segmentation with MaskCLIP
SILC
15.0
SILC: Improving Vision Language Pretraining with Self-Distillation
-
SED
13.9
SED: A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation
SimSeg
7
A Simple Baseline for Open-Vocabulary Semantic Segmentation with Pre-trained Vision-language Model
FC-CLIP
14.8
Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
SCAN
14.0
Open-Vocabulary Segmentation with Semantic-Assisted Calibration
MAFT+
15.1
Collaborative Vision-Text Representation Optimizing for Open-Vocabulary Segmentation
OVSeg Swin-B
9
Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
MAFT-ViTL
12.1
Learning Mask-aware CLIP Representations for Zero-Shot Segmentation
-
Mask-Adapter
16.2
Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation
-
PosSAM
14.9
PosSAM: Panoptic Open-vocabulary Segment Anything
CLIPSelf
12.4
CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense Prediction
-
0 of 17 row(s) selected.
Previous
Next