HyperAI

Node Classification On Non Homophilic 6

Metrics

1:1 Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model Name1:1 Accuracy
simplifying-graph-convolutional-networks59.73±0.12
revisiting-heterophily-for-graph-neural67.4±0.44
graph-attention-networks61.09±0.77
revisiting-heterophily-for-graph-neural67.15±0.41
simple-and-deep-graph-convolutional-networks-166.38±0.45
revisiting-heterophily-for-graph-neural67.01±0.38
combining-label-propagation-and-simple-models-164.52±0.62
generalizing-graph-neural-networks-beyond67.22±0.90
new-benchmarks-for-learning-on-non60.99±0.14
semi-supervised-classification-with-graph62.23±0.53
new-benchmarks-for-learning-on-non57.71±0.36
revisiting-heterophily-for-graph-neural67.3±0.48
revisiting-heterophily-for-graph-neural67.44±0.31
mixhop-higher-order-graph-convolution66.80±0.58
beyond-low-frequency-information-in-graph66.86±0.53
revisiting-heterophily-for-graph-neural66.53±0.57
new-benchmarks-for-learning-on-non56.96±0.26
new-benchmarks-for-learning-on-non59.66±0.92
predict-then-propagate-graph-neural-networks67.21±0.56
revisiting-heterophily-for-graph-neural66.39±0.56
simple-and-deep-graph-convolutional-networks-166.42±0.56
revisiting-heterophily-for-graph-neural66.6±0.57
revisiting-heterophily-for-graph-neural66.67±0.56
joint-adaptive-feature-smoothing-and-topology66.90±0.50
revisiting-heterophily-for-graph-neural67.5±0.53
combining-label-propagation-and-simple-models-164.60±0.57
new-benchmarks-for-learning-on-non66.55±0.72
new-benchmarks-for-learning-on-non56.50±0.41