HyperAI

Node Classification On Non Homophilic 12

Metrics

1:1 Accuracy

Results

Performance results of various models on this benchmark

Comparison Table
Model Name1:1 Accuracy
revisiting-heterophily-for-graph-neural55.19 ± 1.49
large-scale-learning-on-non-homophilous61.81 ± 1.80
deformable-graph-convolutional-networks62.56 ± 1.31
revisiting-heterophily-for-graph-neural67.06 ± 1.66
addressing-heterophily-in-node-classification73.56 ± 1.62
scale-invariance-of-graph-neural-networks76.0±2.0
neural-sheaf-diffusion-a-topological53.17 ± 1.31
two-sides-of-the-same-coin-heterophily-and55.17 ± 1.58
breaking-the-limit-of-graph-neural-networks48.85 ± 0.78
finding-global-homophily-in-graph-neural57.88 ± 1.76 
non-local-graph-neural-networks33.7 ± 1.5
revisiting-heterophily-for-graph-neural51.8 ± 1.5
joint-adaptive-feature-smoothing-and-topology46.31 ± 2.46
simple-and-deep-graph-convolutional-networks-138.47 ± 1.58
neural-sheaf-diffusion-a-topological56.34 ± 1.32
revisiting-heterophily-for-graph-neural66.98 ± 1.71
non-local-graph-neural-networks59.0 ± 1.2
finding-global-homophily-in-graph-neural57.54 ± 1.39 
edge-directionality-improves-learning-on75.31±1.92
revisiting-heterophily-for-graph-neural40.02 ± 0.96
revisiting-heterophily-for-graph-neural67.07 ± 1.65
generalizing-graph-neural-networks-beyond36.48 ± 1.86
geom-gcn-geometric-graph-convolutional-138.15 ± 0.92
revisiting-heterophily-for-graph-neural45.00 ± 1.4
revisiting-heterophily-for-graph-neural67.4 ± 2.21
beyond-low-frequency-information-in-graph30.83 ± 0.69
non-local-graph-neural-networks56.8 ± 2.5
mixhop-higher-order-graph-convolution 43.80 ± 1.48 
neural-sheaf-diffusion-a-topological54.78 ± 1.81