HyperAI

Multi Object Tracking On Mot20 1

Metrics

IDF1
MOTA

Results

Performance results of various models on this benchmark

Comparison Table
Model NameIDF1MOTA
2103-1514557.972.4
bot-sort-robust-associations-multi-pedestrian77.577.8
adaptrack-adaptive-thresholding-based80.775.0
boosttrack-boosting-the-similarity-measure81.577.2
simpletrack-rethinking-and-improving-the-jde70.272.6
ucmctrack-multi-object-tracking-with-uniform77.4-
spatial-temporal-graph-transformer-for75.277.5
multiple-object-tracking-from-appearance-by69.768.0
joint-detection-and-multi-object-tracking-67.1
interacting-multiple-model-based-joint74.6472.82
a-confidence-aware-matching-strategy-for79.976.2
deep-oc-sort-multi-pedestrian-tracking-by79.275.6
learning-a-neural-solver-for-multiple-object-159.157.6
boosttrack-using-tracklet-information-to8277.7
bytetrack-multi-object-tracking-by-175.277.8
online-multi-object-tracking-with69.468.5
sparsetrack-multi-object-tracking-by77.378.2
detection-recovery-in-online-multi-object70.672.8
hoptrack-a-real-time-multi-object-tracking-45.6
lmot-efficient-light-weight-detection-and61.159.1
a-simple-baseline-for-multi-object-tracking67.361.8
strongsort-make-deepsort-great-again77.073.8
smiletrack-similarity-learning-for-multiple77.578.2
observation-centric-sort-rethinking-sort-for76.475.9
sfsort-scene-features-based-simple-online73.575
when-to-extract-reid-features-a-selective75.4-