Multi Label Classification On Chexpert
Metrics
AVERAGE AUC ON 14 LABEL
NUM RADS BELOW CURVE
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | AVERAGE AUC ON 14 LABEL | NUM RADS BELOW CURVE |
---|---|---|
Model 1 | 0.903 | 1.600 |
Model 2 | 0.879 | 0.600 |
Model 3 | 0.911 | 2.200 |
Model 4 | 0.882 | 0.600 |
Model 5 | 0.618 | 0.200 |
Model 6 | 0.899 | 1.600 |
Model 7 | 0.923 | 2.400 |
Model 8 | 0.897 | 1.200 |
Model 9 | 0.919 | 2.200 |
Model 10 | 0.917 | 2.400 |
Model 11 | 0.909 | 2.200 |
Model 12 | 0.881 | 1.000 |
Model 13 | 0.912 | 2.000 |
Model 14 | 0.884 | 0.800 |
Model 15 | 0.909 | 2.000 |
Model 16 | 0.927 | 2.600 |
Model 17 | 0.850 | 0.600 |
Model 18 | 0.923 | 2.400 |
Model 19 | 0.862 | 0.800 |
Model 20 | 0.924 | 2.400 |
Model 21 | 0.923 | 2.600 |
Model 22 | 0.899 | 1.400 |
Model 23 | 0.922 | 2.800 |
Model 24 | 0.929 | 2.800 |
Model 25 | 0.887 | 1.200 |
Model 26 | 0.915 | 2.200 |
Model 27 | 0.913 | 2.200 |
Model 28 | 0.860 | 0.600 |
Model 29 | 0.887 | 1.200 |
Model 30 | 0.887 | 1.200 |
Model 31 | 0.889 | 1.400 |
Model 32 | 0.906 | 1.600 |
Model 33 | 0.913 | 2.000 |
Model 34 | 0.908 | 2.000 |
Model 35 | 0.897 | 1.600 |
Model 36 | 0.865 | 0.600 |
Model 37 | 0.923 | 2.400 |
projective-transformation-rectification-for | 0.906 | 1.600 |
Model 39 | 0.915 | 2.200 |
Model 40 | 0.916 | 2.400 |
Model 41 | 0.889 | 1.400 |
Model 42 | 0.900 | 1.200 |
category-wise-fine-tuning-for-image-multi | 0.933 | - |
Model 44 | 0.838 | 0.400 |
Model 45 | 0.834 | 0.400 |
Model 46 | 0.895 | 1.000 |
Model 47 | 0.901 | 1.400 |
Model 48 | 0.919 | 2.600 |
Model 49 | 0.760 | 0.000 |
Model 50 | 0.886 | 0.800 |
Model 51 | 0.929 | 2.600 |
Model 52 | 0.913 | 2.200 |
Model 53 | 0.481 | 0.000 |
Model 54 | 0.899 | 1.400 |
Model 55 | 0.929 | 2.600 |
Model 56 | 0.914 | 2.000 |
Model 57 | 0.919 | 2.400 |
Model 58 | 0.884 | 1.600 |
Model 59 | 0.925 | 2.400 |
Model 60 | 0.928 | 2.600 |
Model 61 | 0.898 | 1.800 |
Model 62 | 0.924 | 2.400 |
Model 63 | 0.924 | 2.400 |
Model 64 | 0.917 | 2.200 |
Model 65 | 0.844 | 0.400 |
Model 66 | 0.916 | 2.200 |
Model 67 | 0.909 | 1.800 |
Model 68 | 0.920 | 2.600 |
Model 69 | 0.927 | 2.600 |
Model 70 | 0.927 | 3.000 |
Model 71 | 0.863 | 0.800 |
Model 72 | 0.848 | 0.200 |
Model 73 | 0.899 | 1.600 |
Model 74 | 0.917 | 2.200 |
Model 75 | 0.906 | 1.600 |
Model 76 | 0.875 | 1.200 |
Model 77 | 0.769 | 0.000 |
Model 78 | 0.899 | 2.000 |
Model 79 | 0.905 | 1.600 |
Model 80 | 0.887 | 1.200 |
Model 81 | 0.880 | 1.200 |
Model 82 | 0.878 | 0.600 |
Model 83 | 0.923 | 2.400 |
Model 84 | 0.876 | 1.200 |
Model 85 | 0.732 | 0.600 |
Model 86 | 0.902 | 2.000 |
Model 87 | 0.923 | 2.600 |
Model 88 | 0.916 | 2.400 |
Model 89 | 0.886 | 1.000 |
Model 90 | 0.882 | 0.800 |
Model 91 | 0.911 | 2.000 |
Model 92 | 0.724 | 0.000 |
Model 93 | 0.919 | 2.600 |
anatomy-x-net-a-semi-supervised-anatomy-aware | 0.917 | 2.600 |
Model 95 | 0.916 | 2.600 |
interpreting-chest-x-rays-via-cnns-that | 0.929 | 2.600 |
Model 97 | 0.898 | 1.200 |
Model 98 | 0.907 | 1.600 |
Model 99 | 0.904 | 1.200 |
Model 100 | 0.925 | 2.400 |
Model 101 | 0.926 | 2.600 |
Model 102 | 0.500 | 0.000 |
Model 103 | 0.918 | 2.600 |
Model 104 | 0.914 | 2.600 |
Model 105 | 0.894 | 1.600 |
Model 106 | 0.890 | 1.000 |
projective-transformation-rectification-for | 0.899 | 1.400 |
Model 108 | 0.860 | 0.800 |
robust-deep-auc-maximization-a-new-surrogate | 0.930 | 2.800 |
Model 110 | 0.922 | 2.400 |
Model 111 | 0.918 | 2.600 |
Model 112 | 0.883 | 1.200 |
Model 113 | 0.524 | 0.000 |
Model 114 | 0.928 | 2.600 |
Model 115 | 0.876 | 1.000 |
category-wise-fine-tuning-for-image-multi | 0.918 | 2.600 |
Model 117 | 0.918 | 2.600 |
Model 118 | 0.914 | 2.400 |
Model 119 | 0.920 | 2.400 |
Model 120 | 0.921 | 2.400 |
Model 121 | 0.897 | 1.600 |
interpreting-chest-x-rays-via-cnns-that | 0.930 | 2.600 |
Model 123 | 0.919 | 2.400 |
Model 124 | 0.895 | 1.800 |
Model 125 | 0.921 | 2.400 |
Model 126 | 0.907 | 1.600 |
Model 127 | 0.797 | 0.600 |
Model 128 | 0.894 | 1.600 |
Model 129 | 0.896 | 1.400 |
Model 130 | 0.894 | 1.600 |
Model 131 | 0.853 | 0.000 |
Model 132 | 0.923 | 2.600 |
Model 133 | 0.924 | 2.400 |
Model 134 | 0.895 | 1.400 |
Model 135 | 0.888 | 1.000 |
Model 136 | 0.908 | 1.800 |
Model 137 | 0.911 | 2.200 |
Model 138 | 0.859 | 0.600 |
Model 139 | 0.840 | 0.400 |
anatomy-x-net-a-semi-supervised-anatomy-aware | 0.926 | 2.600 |
Model 141 | 0.898 | 1.400 |
Model 142 | 0.875 | 1.000 |
masks-and-manuscripts-advancing-medical-pre | 0.909 | - |
Model 144 | 0.891 | 1.000 |
Model 145 | 0.859 | 0.600 |
Model 146 | 0.822 | 0.000 |
Model 147 | 0.882 | 0.400 |
Model 148 | 0.916 | 2.200 |
Model 149 | 0.868 | 0.600 |
Model 150 | 0.917 | 2.000 |
Model 151 | 0.861 | 0.400 |
Model 152 | 0.911 | 2.000 |
Model 153 | 0.892 | 1.600 |
Model 154 | 0.895 | 1.200 |
chexclusion-fairness-gaps-in-deep-chest-x-ray | 0.805 | - |
Model 156 | 0.896 | 1.400 |
Model 157 | 0.873 | 0.800 |
Model 158 | 0.911 | 2.200 |
Model 159 | 0.896 | 1.400 |
Model 160 | 0.929 | 2.600 |
Model 161 | 0.727 | 0.000 |
Model 162 | 0.915 | 2.400 |
Model 163 | 0.924 | 2.400 |
Model 164 | 0.927 | 2.600 |
Model 165 | 0.899 | 1.800 |
Model 166 | 0.888 | 1.000 |
Model 167 | 0.910 | 2.200 |
Model 168 | 0.901 | 1.600 |
Model 169 | 0.917 | 2.200 |
Model 170 | 0.908 | 1.800 |
Model 171 | 0.868 | 0.800 |
Model 172 | 0.606 | 0.000 |
Model 173 | 0.830 | 0.200 |
Model 174 | 0.900 | 1.600 |
Model 175 | 0.923 | 2.600 |
Model 176 | 0.915 | 2.600 |
Model 177 | 0.606 | 0.000 |
Model 178 | 0.912 | 2.200 |
Model 179 | 0.911 | 2.000 |
Model 180 | 0.899 | 1.600 |
Model 181 | 0.921 | 2.600 |
Model 182 | 0.926 | 3.000 |
Model 183 | 0.615 | 0.000 |
Model 184 | 0.915 | 2.400 |
projective-transformation-rectification-for | 0.896 | 1.400 |
Model 186 | 0.919 | 2.200 |
Model 187 | 0.479 | 0.000 |
Model 188 | 0.858 | 0.000 |
Model 189 | 0.481 | 0.000 |
Model 190 | 0.894 | 1.000 |
Model 191 | 0.871 | 0.600 |
Model 192 | 0.895 | 1.600 |
Model 193 | 0.919 | 2.400 |
Model 194 | 0.854 | 0.800 |
Model 195 | 0.907 | 1.400 |
Model 196 | 0.916 | 2.600 |
Model 197 | 0.905 | 2.000 |
Model 198 | 0.890 | 1.000 |
Model 199 | 0.575 | 0.000 |
Model 200 | 0.905 | 1.800 |
Model 201 | 0.890 | 0.800 |
Model 202 | 0.851 | 0.400 |
Model 203 | 0.842 | 0.200 |
Model 204 | 0.858 | 1.000 |
Model 205 | 0.835 | 0.000 |
Model 206 | 0.848 | 0.600 |
Model 207 | 0.896 | 1.400 |
Model 208 | 0.902 | 1.800 |
Model 209 | 0.922 | 2.400 |
Model 210 | 0.883 | 0.600 |
Model 211 | 0.921 | 2.400 |
chexpert-a-large-chest-radiograph-dataset | 0.907 | 1.800 |
Model 213 | 0.891 | 1.200 |
Model 214 | 0.906 | 1.600 |
Model 215 | 0.837 | 0.200 |
Model 216 | 0.736 | 0.000 |
Model 217 | 0.850 | 0.400 |
Model 218 | 0.916 | 2.400 |
Model 219 | 0.861 | 1.000 |
Model 220 | 0.911 | 2.200 |
Model 221 | 0.873 | 0.400 |
Model 222 | 0.886 | 1.200 |
Model 223 | 0.531 | 0.000 |
Model 224 | 0.926 | 2.600 |
Model 225 | 0.896 | 1.600 |
Model 226 | 0.924 | 2.600 |