Link Prediction On Wn18Rr
Metrics
Hits@1
Hits@10
Hits@3
MR
MRR
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Hits@1 | Hits@10 | Hits@3 | MR | MRR |
---|---|---|---|---|---|
dense-an-enhanced-non-abelian-group | 0.443 | 0.579 | 0.508 | 3052 | 0.491 |
self-attention-presents-low-dimensional | 0.454 | 0.558 | 0.508 | - | 0.491 |
neural-bellman-ford-networks-a-general-graph | 0.497 | 0.666 | 0.573 | 636 | 0.551 |
low-dimensional-hyperbolic-knowledge-graph-1 | 0.449 | 0.586 | 0.514 | - | .496 |
hitter-hierarchical-transformers-for | 0.462 | 0.584 | 0.516 | - | 0.503 |
canonical-tensor-decomposition-for-knowledge | - | 0.57 | - | - | 0.48 |
neptune-neural-powered-tucker-network-for | 0.455 | 0.557 | 0.507 | - | 0.491 |
greenkgc-a-lightweight-knowledge-graph | - | 0.491 | 0.43 | - | 0.411 |
augmenting-and-tuning-knowledge-graph | - | - | - | - | 0.455 |
logical-entity-representation-in-knowledge | 0.593 | 0.682 | 0.634 | - | 0.622 |
nscaching-simple-and-efficient-negative | - | 0.5089 | - | 5365 | 0.4463 |
modeling-heterogeneous-hierarchies-with | 0.453 | 0.579 | 0.515 | - | 0.496 |
a-capsule-network-based-embedding-model-for-1 | - | 0.56 | - | 719.0 | 0.415 |
mocosa-momentum-contrast-for-knowledge-graph | 0.624 | 0.82 | 0.737 | - | 0.696 |
drum-end-to-end-differentiable-rule-mining-on | 0.425 | 0.586 | 0.513 | - | 0.486 |
palt-parameter-lite-transfer-of-language | - | 0.693 | - | 61 | - |
learning-hierarchy-aware-knowledge-graph | 0.452 | 0.582 | 0.516 | - | 0.497 |
knowledge-graph-embedding-with-linear | 0.453 | 0.578 | 0.509 | 1644 | 0.495 |
kgrefiner-knowledge-graph-refinement-for | - | 0.57 | - | 683 | 0.448 |
embedding-entities-and-relations-for-learning | 0.39 | - | - | - | 0.43 |
how-does-knowledge-graph-embedding | 0.446 | 0.572 | 0.509 | 3211 | 0.484 |
unified-interpretation-of-softmax-cross | 0.444 | 0.553 | 0.496 | - | 0.481 |
autokge-searching-scoring-functions-for | - | 0.567 | - | - | 0.490 |
from-discrimination-to-generation-knowledge | 0.287 | 0.535 | 0.403 | - | - |
hypernetwork-knowledge-graph-embeddings | 0.436 | 0.522 | 0.477 | 5796 | 0.465 |
kg-bert-bert-for-knowledge-graph-completion | - | 0.524 | - | 97 | - |
decompressing-knowledge-graph-representations | 0.427 | 0.515 | 0.469 | - | 0.457 |
kbgan-adversarial-learning-for-knowledge | - | 0.469 | - | - | 0.215 |
convolutional-2d-knowledge-graph-embeddings | 0.400 | 0.520 | 0.440 | - | 0.430 |
kermit-knowledge-graph-completion-of-enhanced | 0.629 | 0.832 | 0.738 | - | 0.700 |
quaternion-knowledge-graph-embedding | 0.438 | 0.582 | 0.508 | 2314 | 0.488 |
multi-partition-embedding-interaction-with | 0.444 | 0.551 | 0.496 | - | 0.481 |
relphormer-relational-graph-transformer-for | 0.448 | 0.591 | - | - | 0.495 |
mlmlm-link-prediction-with-mean-likelihood | 0.4391 | 0.611 | 0.5418 | 1603 | 0.5017 |
knowledge-graph-embedding-via-graph | 0.424 | 0.604 | 0.525 | 1270 | 0.467 |
probabilistic-case-based-reasoning-for-open | 0.43 | 0.55 | 0.49 | - | 0.48 |
meim-multi-partition-embedding-interaction | 0.458 | 0.577 | 0.518 | - | 0.499 |
unified-interpretation-of-softmax-cross | 0.441 | 0.546 | 0.491 | - | 0.477 |
end-to-end-structure-aware-convolutional | 0.43 | 0.54 | 0.48 | - | 0.47 |
tucker-tensor-factorization-for-knowledge | 0.443 | 0.526 | 0.482 | - | 0.470 |
duality-induced-regularizer-for-tensor | 0.441 | 0.552 | - | - | 0.478 |
relation-prediction-as-an-auxiliary-training | 0.443 | 0.578 | 0.505 | - | 0.488 |
rot-pro-modeling-transitivity-by-projection | 0.397 | 0.577 | 0.482 | - | 0.457 |
rotate-knowledge-graph-embedding-by | 0.428 | 0.571 | 0.492 | 3340 | 0.476 |
quatde-dynamic-quaternion-embedding-for | 0.438 | 0.586 | 0.509 | 1977 | 0.489 |
greenkgc-a-lightweight-knowledge-graph | 0.3 | 0.413 | 0.365 | - | 0.342 |
composition-based-multi-relational-graph | 0.443 | 0.546 | 0.494 | 3533 | 0.479 |
safran-an-interpretable-rule-based-link | 0.459 | 0.578 | - | - | 0.502 |
language-models-as-knowledge-embeddings | 0.523 | 0.789 | 0.671 | 79 | 0.619 |
duality-induced-regularizer-for-tensor | 0.455 | 0.577 | - | - | 0.498 |
semantic-triple-encoder-for-fast-open-set | 0.243 | 0.709 | 0.491 | 51 | 0.401 |
embedding-knowledge-graphs-attentive-to | - | 0.575 | - | 3390 | 0.486 |
a-novel-embedding-model-for-knowledge-base | - | 0.525 | - | 2554.0 | 0.248 |
simkgc-simple-contrastive-knowledge-graph | 0.588 | 0.817 | 0.731 | - | 0.671 |
convolutional-2d-knowledge-graph-embeddings | 0.35 | 0.35 | 0.35 | 13526 | 0.35 |
m-walk-learning-to-walk-over-graphs-using | 0.414 | - | 0.445 | - | 0.437 |
duality-induced-regularizer-for-tensor | 0.449 | - | - | - | 0.491 |
190600687 | 0.452 | 0.557 | 0.505 | - | 0.486 |
rotate-knowledge-graph-embedding-by | 0.417 | 0.552 | 0.479 | 2923 | 0.462 |
multi-relational-poincare-graph-embeddings | 0.440 | 0.566 | 0.495 | - | 0.481 |
orthogonal-relation-transforms-with-graph | 0.442 | 0.583 | 0.511 | 2715 | 0.491 |
mde-multi-distance-embeddings-for-link | - | 0.560 | - | 3219 | 0.458 |
mocokgc-momentum-contrast-entity-encoding-for | 0.665 | 0.881 | 0.792 | - | 0.742 |
joint-language-semantic-and-structure | - | 0.786 | - | 35 | - |
complex-embeddings-for-simple-link-prediction | 0.410 | 0.510 | - | - | 0.440 |
translating-embeddings-for-modeling-multi | 0.4226 | 0.5555 | - | - | 0.4659 |
learning-attention-based-embeddings-for | 0.361 | 0.581 | 0.483 | 1940.0 | 0.44 |
contextual-parameter-generation-for-knowledge | .4405 | .5612 | - | - | .4833 |
predicting-semantic-relations-using-global | 0.4537 | 0.5902 | - | - | 0.4983 |
adaptive-convolution-for-multi-relational | 0.443 | 0.537 | 0.489 | - | 0.475 |
self-distillation-with-meta-learning-for-1 | 0.447 | 0.570 | 0.504 | - | 0.491 |
lp-bert-multi-task-pre-training-knowledge | 0.343 | 0.752 | 0.563 | 92 | 0.482 |
interacte-improving-convolution-based | 0.430 | 0.528 | - | 5202 | 0.463 |
kglm-integrating-knowledge-graph-structure-in | 0.330 | 0.741 | 0.538 | 40.18 | 0.467 |