HyperAI

Interactive Segmentation On Grabcut

Metrics

NoC@85
NoC@90

Results

Performance results of various models on this benchmark

Comparison Table
Model NameNoC@85NoC@90
simpleclick-interactive-image-segmentation1.321.40
regional-interactive-image-segmentation-5.00
cfr-icl-cascade-forward-refinement-with-1.42
deep-interactive-object-selection8.0212.59
interactive-image-segmentation-via2.603.60
content-aware-multi-level-guidance-for-3.58
interactive-image-segmentation-with-latent3.204.79
mst-adaptive-multi-scale-tokens-guided-1.48
reviving-iterative-training-with-mask1.421.54
edgeflow-achieving-practical-interactive1.61.72
ucp-net-unstructured-contour-points-for22.76
reviving-iterative-training-with-mask1.762.04
cfr-icl-cascade-forward-refinement-with1.301.32
continuous-adaptation-for-interactive-object-3.07
f-brs-rethinking-backpropagating-refinement22.46
intention-aware-feature-propagation-network-1.68
simpleclick-interactive-image-segmentation1.321.44
deep-interactive-object-selection5.086.08