HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Incremental Learning
Incremental Learning On Cifar 100 50 Classes 2
Incremental Learning On Cifar 100 50 Classes 2
Metrics
Average Incremental Accuracy
Results
Performance results of various models on this benchmark
Columns
Model Name
Average Incremental Accuracy
Paper Title
Repository
FOSTER
67.95
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
BiC
53.21
Large Scale Incremental Learning
TCIL-Lite
73.50
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
RMM (Modified ResNet-32)
67.61
RMM: Reinforced Memory Management for Class-Incremental Learning
PODNet (CNN)
63.19
PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning
D3Former
70.94
D3Former: Debiased Dual Distilled Transformer for Incremental Learning
DER(Standard ResNet-18)
72.45
DER: Dynamically Expandable Representation for Class Incremental Learning
iCaRL*
52.57
iCaRL: Incremental Classifier and Representation Learning
TCIL
73.72
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
UCIR (CNN)*
60.18
Learning a Unified Classifier Incrementally via Rebalancing
UCIR (NME)*
60.12
Learning a Unified Classifier Incrementally via Rebalancing
CCIL-SD
65.86
Essentials for Class Incremental Learning
DER(Modified ResNet-32)
66.36
DER: Dynamically Expandable Representation for Class Incremental Learning
0 of 13 row(s) selected.
Previous
Next