HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Incremental Learning
Incremental Learning On Cifar 100 50 Classes 2
Incremental Learning On Cifar 100 50 Classes 2
Metrics
Average Incremental Accuracy
Results
Performance results of various models on this benchmark
Columns
Model Name
Average Incremental Accuracy
Paper Title
TCIL
73.72
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
TCIL-Lite
73.50
Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning
DER(Standard ResNet-18)
72.45
DER: Dynamically Expandable Representation for Class Incremental Learning
D3Former
70.94
D3Former: Debiased Dual Distilled Transformer for Incremental Learning
FOSTER
67.95
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
RMM (Modified ResNet-32)
67.61
RMM: Reinforced Memory Management for Class-Incremental Learning
DER(Modified ResNet-32)
66.36
DER: Dynamically Expandable Representation for Class Incremental Learning
CCIL-SD
65.86
Essentials for Class Incremental Learning
PODNet (CNN)
63.19
PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning
UCIR (CNN)*
60.18
Learning a Unified Classifier Incrementally via Rebalancing
UCIR (NME)*
60.12
Learning a Unified Classifier Incrementally via Rebalancing
BiC
53.21
Large Scale Incremental Learning
iCaRL*
52.57
iCaRL: Incremental Classifier and Representation Learning
0 of 13 row(s) selected.
Previous
Next
Incremental Learning On Cifar 100 50 Classes 2 | SOTA | HyperAI