HyperAI

Image Super Resolution On Set14 4X Upscaling

Metrics

PSNR
SSIM

Results

Performance results of various models on this benchmark

Comparison Table
Model NamePSNRSSIM
transcending-the-limit-of-local-window29.240.7974
beyond-deep-residual-learning-for-image28.800.7856
lightweight-and-efficient-image-super28.560.7803
hierarchical-back-projection-network-for28.670.785
extracter-efficient-texture-matching-with28.090.782
hmanet-hybrid-multi-axis-aggregation-network29.510.8019
enhancenet-single-image-super-resolution28.420.7774
structure-preserving-super-resolution-with26.640.7930
mair-a-locality-and-continuity-preserving29.20.7958
a-fully-progressive-approach-to-single-image28.94-
feature-modulation-transformer-cross28.850.7872
sesr-single-image-super-resolution-with28.320.784
auto-encoded-supervision-for-perceptual-image27.4210.7438
gated-multiple-feedback-network-for-image28.840.7888
channel-partitioned-windowed-attention-and29.340.7991
photo-realistic-single-image-super-resolution-0.7486
detail-revealing-deep-video-super-resolution27.570.76
deep-learning-based-image-super-resolution27.62220.7419
edge-informed-single-image-super-resolution25.190.894
progressive-perception-oriented-network-for-0.7946
learning-deep-cnn-denoiser-prior-for-image27.59-
recovering-realistic-texture-in-image-super26.130.694
ml-craist-multi-scale-low-high-frequency28.40.7863
deep-back-projection-networks-for-single29.030.791
image-super-resolution-with-cross-scale-non28.950.7888
learning-a-single-convolutional-super28.350.777
hit-sr-hierarchical-transformer-for-efficient28.870.7880
esrgan-enhanced-super-resolution-generative28.990.7917
activating-more-pixels-in-image-super29.380.8001
hit-sr-hierarchical-transformer-for-efficient28.840.7873
channel-partitioned-windowed-attention-and29.360.7996
cfat-unleashing-triangular-windows-for-image29.300.7985
photo-realistic-single-image-super-resolution28.490.8184
dual-aggregation-transformer-for-image-super29.290.7983
activating-more-pixels-in-image-super29.470.8015
second-order-attention-network-for-single29.050.7921
Model 3729.200.7973
swinfir-revisiting-the-swinir-with-fast29.44-
camixersr-only-details-need-more-attention28.820.7870
data-upcycling-knowledge-distillation-for28.800.7866
local-texture-estimator-for-implicit29.06-
seven-ways-to-improve-example-based-single27.88-
dual-aggregation-transformer-for-image-super29.230.7973
image-super-resolution-using-very-deep28.870.7889
transforming-image-super-resolution-a28.730.7842
trainable-nonlinear-reaction-diffusion-a27.68-
multi-scale-attention-network-for-image-super29.120.7941
hit-sr-hierarchical-transformer-for-efficient28.830.7873
hierarchical-information-flow-for-generalized29.490.8041
image-super-resolution-via-dynamic-network28.380.7760
drct-saving-image-super-resolution-away-from29.540.8025
deep-mean-shift-priors-for-image-restoration26.22-
photo-realistic-single-image-super-resolution24.640.71
fast-accurate-and-lightweight-super-128.600.7806
mair-a-locality-and-continuity-preserving29.280.7974
cascade-convolutional-neural-network-for28.470.7720
residual-dense-network-for-image-super28.810.7871
deeply-recursive-convolutional-network-for28.020.8074
image-super-resolution-via-rl-csc-when28.290.7741
spatially-adaptive-feature-modulation-for28.600.7813
fast-and-accurate-single-image-super28.250.773
lightweight-image-super-resolution-with-228.430.7776
joint-maximum-purity-forest-with-application27.37-
recursive-generalization-transformer-for29.280.7979
deep-laplacian-pyramid-networks-for-fast-and28.190.772
image-super-resolution-via-dual-state28.070.770
deepred-deep-image-prior-powered-by-red27.63-
deep-back-projection-networks-for-super28.820.786
lightweight-image-super-resolution-with-128.58-
feedback-network-for-image-super-resolution28.810.7868
swift-parameter-free-attention-network-for28.660.7834
recursive-generalization-transformer-for29.230.7972
efficient-long-range-attention-network-for28.960.7914
single-image-super-resolution-via-a-holistic28.990.7907
image-reconstruction-with-predictive-filter28.980.7904
efficient-image-super-resolution-via28.300.7736
image-super-resolution-via-attention-based28.940.789
progressive-multi-scale-residual-network-for27.720.7405
image-super-resolution-using-deep27.50.7513
beyond-a-gaussian-denoiser-residual-learning28.040.7672
enhanced-deep-residual-networks-for-single28.800.7876
multi-scale-attention-network-for-image-super29.070.7934
multi-level-wavelet-cnn-for-image-restoration28.410.7816
photo-realistic-single-image-super-resolution25.990.7397
drct-saving-image-super-resolution-away-from29.400.8003
ram-residual-attention-module-for-single28.540.7800
swinfir-revisiting-the-swinir-with-fast29.360.7993
memnet-a-persistent-memory-network-for-image28.260.7723
a-framework-for-real-time-object-detection28.920.7892
efficient-long-range-attention-network-for28.780.7858
real-time-single-image-and-video-super27.660.8004
progressive-perception-oriented-network-for28.95-
bam-a-lightweight-and-efficient-balanced29.080.7925
lightweight-image-super-resolution-with-228.440.7772
single-image-super-resolution-with-dilated27.830.7631
mambair-a-simple-baseline-for-image29.200.7961
non-local-recurrent-network-for-image28.360.7745
swinir-image-restoration-using-swin29.150.7958
zero-shot-super-resolution-using-deep28.010.7651
ml-craist-multi-scale-low-high-frequency28.530.7895
densely-residual-laplacian-super-resolution29.020.7914
image-restoration-using-convolutional-auto27.860.7718
image-super-resolution-via-feature-augmented27.48-