Image Super Resolution On Set14 4X Upscaling
Metrics
PSNR
SSIM
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | PSNR | SSIM |
---|---|---|
transcending-the-limit-of-local-window | 29.24 | 0.7974 |
beyond-deep-residual-learning-for-image | 28.80 | 0.7856 |
lightweight-and-efficient-image-super | 28.56 | 0.7803 |
hierarchical-back-projection-network-for | 28.67 | 0.785 |
extracter-efficient-texture-matching-with | 28.09 | 0.782 |
hmanet-hybrid-multi-axis-aggregation-network | 29.51 | 0.8019 |
enhancenet-single-image-super-resolution | 28.42 | 0.7774 |
structure-preserving-super-resolution-with | 26.64 | 0.7930 |
mair-a-locality-and-continuity-preserving | 29.2 | 0.7958 |
a-fully-progressive-approach-to-single-image | 28.94 | - |
feature-modulation-transformer-cross | 28.85 | 0.7872 |
sesr-single-image-super-resolution-with | 28.32 | 0.784 |
auto-encoded-supervision-for-perceptual-image | 27.421 | 0.7438 |
gated-multiple-feedback-network-for-image | 28.84 | 0.7888 |
channel-partitioned-windowed-attention-and | 29.34 | 0.7991 |
photo-realistic-single-image-super-resolution | - | 0.7486 |
detail-revealing-deep-video-super-resolution | 27.57 | 0.76 |
deep-learning-based-image-super-resolution | 27.6222 | 0.7419 |
edge-informed-single-image-super-resolution | 25.19 | 0.894 |
progressive-perception-oriented-network-for | - | 0.7946 |
learning-deep-cnn-denoiser-prior-for-image | 27.59 | - |
recovering-realistic-texture-in-image-super | 26.13 | 0.694 |
ml-craist-multi-scale-low-high-frequency | 28.4 | 0.7863 |
deep-back-projection-networks-for-single | 29.03 | 0.791 |
image-super-resolution-with-cross-scale-non | 28.95 | 0.7888 |
learning-a-single-convolutional-super | 28.35 | 0.777 |
hit-sr-hierarchical-transformer-for-efficient | 28.87 | 0.7880 |
esrgan-enhanced-super-resolution-generative | 28.99 | 0.7917 |
activating-more-pixels-in-image-super | 29.38 | 0.8001 |
hit-sr-hierarchical-transformer-for-efficient | 28.84 | 0.7873 |
channel-partitioned-windowed-attention-and | 29.36 | 0.7996 |
cfat-unleashing-triangular-windows-for-image | 29.30 | 0.7985 |
photo-realistic-single-image-super-resolution | 28.49 | 0.8184 |
dual-aggregation-transformer-for-image-super | 29.29 | 0.7983 |
activating-more-pixels-in-image-super | 29.47 | 0.8015 |
second-order-attention-network-for-single | 29.05 | 0.7921 |
Model 37 | 29.20 | 0.7973 |
swinfir-revisiting-the-swinir-with-fast | 29.44 | - |
camixersr-only-details-need-more-attention | 28.82 | 0.7870 |
data-upcycling-knowledge-distillation-for | 28.80 | 0.7866 |
local-texture-estimator-for-implicit | 29.06 | - |
seven-ways-to-improve-example-based-single | 27.88 | - |
dual-aggregation-transformer-for-image-super | 29.23 | 0.7973 |
image-super-resolution-using-very-deep | 28.87 | 0.7889 |
transforming-image-super-resolution-a | 28.73 | 0.7842 |
trainable-nonlinear-reaction-diffusion-a | 27.68 | - |
multi-scale-attention-network-for-image-super | 29.12 | 0.7941 |
hit-sr-hierarchical-transformer-for-efficient | 28.83 | 0.7873 |
hierarchical-information-flow-for-generalized | 29.49 | 0.8041 |
image-super-resolution-via-dynamic-network | 28.38 | 0.7760 |
drct-saving-image-super-resolution-away-from | 29.54 | 0.8025 |
deep-mean-shift-priors-for-image-restoration | 26.22 | - |
photo-realistic-single-image-super-resolution | 24.64 | 0.71 |
fast-accurate-and-lightweight-super-1 | 28.60 | 0.7806 |
mair-a-locality-and-continuity-preserving | 29.28 | 0.7974 |
cascade-convolutional-neural-network-for | 28.47 | 0.7720 |
residual-dense-network-for-image-super | 28.81 | 0.7871 |
deeply-recursive-convolutional-network-for | 28.02 | 0.8074 |
image-super-resolution-via-rl-csc-when | 28.29 | 0.7741 |
spatially-adaptive-feature-modulation-for | 28.60 | 0.7813 |
fast-and-accurate-single-image-super | 28.25 | 0.773 |
lightweight-image-super-resolution-with-2 | 28.43 | 0.7776 |
joint-maximum-purity-forest-with-application | 27.37 | - |
recursive-generalization-transformer-for | 29.28 | 0.7979 |
deep-laplacian-pyramid-networks-for-fast-and | 28.19 | 0.772 |
image-super-resolution-via-dual-state | 28.07 | 0.770 |
deepred-deep-image-prior-powered-by-red | 27.63 | - |
deep-back-projection-networks-for-super | 28.82 | 0.786 |
lightweight-image-super-resolution-with-1 | 28.58 | - |
feedback-network-for-image-super-resolution | 28.81 | 0.7868 |
swift-parameter-free-attention-network-for | 28.66 | 0.7834 |
recursive-generalization-transformer-for | 29.23 | 0.7972 |
efficient-long-range-attention-network-for | 28.96 | 0.7914 |
single-image-super-resolution-via-a-holistic | 28.99 | 0.7907 |
image-reconstruction-with-predictive-filter | 28.98 | 0.7904 |
efficient-image-super-resolution-via | 28.30 | 0.7736 |
image-super-resolution-via-attention-based | 28.94 | 0.789 |
progressive-multi-scale-residual-network-for | 27.72 | 0.7405 |
image-super-resolution-using-deep | 27.5 | 0.7513 |
beyond-a-gaussian-denoiser-residual-learning | 28.04 | 0.7672 |
enhanced-deep-residual-networks-for-single | 28.80 | 0.7876 |
multi-scale-attention-network-for-image-super | 29.07 | 0.7934 |
multi-level-wavelet-cnn-for-image-restoration | 28.41 | 0.7816 |
photo-realistic-single-image-super-resolution | 25.99 | 0.7397 |
drct-saving-image-super-resolution-away-from | 29.40 | 0.8003 |
ram-residual-attention-module-for-single | 28.54 | 0.7800 |
swinfir-revisiting-the-swinir-with-fast | 29.36 | 0.7993 |
memnet-a-persistent-memory-network-for-image | 28.26 | 0.7723 |
a-framework-for-real-time-object-detection | 28.92 | 0.7892 |
efficient-long-range-attention-network-for | 28.78 | 0.7858 |
real-time-single-image-and-video-super | 27.66 | 0.8004 |
progressive-perception-oriented-network-for | 28.95 | - |
bam-a-lightweight-and-efficient-balanced | 29.08 | 0.7925 |
lightweight-image-super-resolution-with-2 | 28.44 | 0.7772 |
single-image-super-resolution-with-dilated | 27.83 | 0.7631 |
mambair-a-simple-baseline-for-image | 29.20 | 0.7961 |
non-local-recurrent-network-for-image | 28.36 | 0.7745 |
swinir-image-restoration-using-swin | 29.15 | 0.7958 |
zero-shot-super-resolution-using-deep | 28.01 | 0.7651 |
ml-craist-multi-scale-low-high-frequency | 28.53 | 0.7895 |
densely-residual-laplacian-super-resolution | 29.02 | 0.7914 |
image-restoration-using-convolutional-auto | 27.86 | 0.7718 |
image-super-resolution-via-feature-augmented | 27.48 | - |