HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Image Clustering
Image Clustering On Tiny Imagenet
Image Clustering On Tiny Imagenet
Metrics
Accuracy
NMI
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy
NMI
Paper Title
PRO-DSC
0.698
0.805
Exploring a Principled Framework For Deep Subspace Clustering
ITAE
0.6823
0.8178
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
SPICE
0.305
0.449
SPICE: Semantic Pseudo-labeling for Image Clustering
IMC-SwAV (Best)
0.282
0.526
Information Maximization Clustering via Multi-View Self-Labelling
IMC-SwAV (Avg+-)
0.279
0.485
Information Maximization Clustering via Multi-View Self-Labelling
C3
0.141
0.335
C3: Cross-instance guided Contrastive Clustering
CC
0.14
0.34
Contrastive Clustering
MMDC
0.119
0.274
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
DCCM
0.108
0.224
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.066
0.190
Deep Adaptive Image Clustering
GAN
0.041
0.135
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DEC
0.037
0.115
Unsupervised Deep Embedding for Clustering Analysis
VAE
0.036
0.113
Auto-Encoding Variational Bayes
JULE
0.033
0.102
Joint Unsupervised Learning of Deep Representations and Image Clusters
0 of 14 row(s) selected.
Previous
Next
Image Clustering On Tiny Imagenet | SOTA | HyperAI