HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Image Clustering
Image Clustering On Imagenet 10
Image Clustering On Imagenet 10
Metrics
Accuracy
NMI
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy
NMI
Paper Title
Repository
JULE
0.300
0.175
Joint Unsupervised Learning of Deep Representations and Image Clusters
ConCURL
0.958
0.907
Representation Learning for Clustering via Building Consensus
DPAC
0.97
0.925
Deep Online Probability Aggregation Clustering
-
CoHiClust
0.953
0.907
Contrastive Hierarchical Clustering
VAE
0.334
0.193
Auto-Encoding Variational Bayes
SPICE (Full ImageNet pre-train)
0.969
0.927
SPICE: Semantic Pseudo-labeling for Image Clustering
TCL
0.895
0.875
Twin Contrastive Learning for Online Clustering
IDFD
0.954
0.898
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
MMDC
0.811
0.719
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
TAC
0.992
0.985
Image Clustering with External Guidance
ProPos*
0.962
0.908
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
CC
0.893
0.859
Contrastive Clustering
DEC
0.381
0.282
Unsupervised Deep Embedding for Clustering Analysis
C3
0.942
0.905
C3: Cross-instance guided Contrastive Clustering
DCCM
0.71
0.608
Deep Comprehensive Correlation Mining for Image Clustering
DAC
0.527
0.394
Deep Adaptive Image Clustering
GAN
0.346
0.225
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
ProPos
0.956
0.896
Learning Representation for Clustering via Prototype Scattering and Positive Sampling
0 of 18 row(s) selected.
Previous
Next