HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Image Clustering
Image Clustering On Imagenet
Image Clustering On Imagenet
Metrics
ARI
Accuracy
NMI
Results
Performance results of various models on this benchmark
Columns
Model Name
ARI
Accuracy
NMI
Paper Title
Repository
MIM-Refiner (D2V2-ViT-H/14)
42.2
67.3
87.2
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
-
TEMI DINO (ViT-B)
45.9
58.0
81.4
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
TURTLE (CLIP + DINOv2)
62.5
72.9
88.2
Let Go of Your Labels with Unsupervised Transfer
-
MIM-Refiner (MAE-ViT-H/14)
45.5
64.6
85.3
MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
-
TEMI MSN (ViT-L)
48.4
61.6
82.5
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
MAE-CT (ViT-H/16 best)
-
58.0
81.8
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
SCAN
-
39.9
72.0
SCAN: Learning to Classify Images without Labels
-
SeLa
-
-
66.4
Self-labelling via simultaneous clustering and representation learning
-
SeCu
41.9
53.5
79.4
Stable Cluster Discrimination for Deep Clustering
-
CoKe
35.6
47.6
76.2
Stable Cluster Discrimination for Deep Clustering
-
PRO-DSC
-
65.0
83.4
Exploring a Principled Framework For Deep Subspace Clustering
MAE-CT (ViT-H/16 mean)
-
57.1
81.7
Contrastive Tuning: A Little Help to Make Masked Autoencoders Forget
-
0 of 12 row(s) selected.
Previous
Next
Image Clustering On Imagenet | SOTA | HyperAI