HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
Image Clustering
Image Clustering On Cifar 100
Image Clustering On Cifar 100
Metrics
ARI
Accuracy
NMI
Train Set
Results
Performance results of various models on this benchmark
Columns
Model Name
ARI
Accuracy
NMI
Train Set
Paper Title
Repository
TCL
0.357
0.531
0.529
Train
Twin Contrastive Learning for Online Clustering
-
HUME
0.377
0.555
-
Train
-
-
MMDC
-
0.446
0.418
-
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
-
RUC
-
-
-
Train
Improving Unsupervised Image Clustering With Robust Learning
-
IMC-SwAV (Avg+-)
0.337
0.49
0.503
-
Information Maximization Clustering via Multi-View Self-Labelling
-
ITAE
0.5053
0.6502
0.771
Test
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
-
DeeperCluster
-
0.189
-
Train+Test
Deep Clustering for Unsupervised Learning of Visual Features
-
SPICE*
0.422
0.584
0.583
Train
SPICE: Semantic Pseudo-labeling for Image Clustering
-
DPAC
0.393
0.555
0.542
-
Deep Online Probability Aggregation Clustering
-
TEMI DINO ViT-B
0.533
0.671
0.769
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
JULE
-
0.137
0.103
Train+Test
Joint Unsupervised Learning of Deep Representations and Image Clusters
-
ConCURL
0.303
0.479
0.468
Train
Representation Learning for Clustering via Building Consensus
-
TEMI CLIP ViT-L (openai)
0.612
0.737
0.799
Train
Exploring the Limits of Deep Image Clustering using Pretrained Models
-
PRO-DSC
-
0.773
0.824
-
Exploring a Principled Framework For Deep Subspace Clustering
TURTLE (CLIP + DINOv2)
0.834
0.898
0.915
-
Let Go of Your Labels with Unsupervised Transfer
-
DEC
-
0.185
0.136
Train+Test
Unsupervised Deep Embedding for Clustering Analysis
-
CC
0.266
0.429
0.431
-
Contrastive Clustering
-
IDFD
0.264
0.425
0.426
Train
Clustering-friendly Representation Learning via Instance Discrimination and Feature Decorrelation
-
DCCM
-
0.327
0.285
Train+Test
Deep Comprehensive Correlation Mining for Image Clustering
-
CoHiClust
0.299
0.437
0.467
-
Contrastive Hierarchical Clustering
-
0 of 30 row(s) selected.
Previous
Next
Image Clustering On Cifar 100 | SOTA | HyperAI