Graph Regression On Zinc
Metrics
MAE
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | MAE |
---|---|
recipe-for-a-general-powerful-scalable-graph | 0.070 ± 0.002 |
extending-the-design-space-of-graph-neural-1 | 0.059 |
generalizing-topological-graph-neural | 0.096 |
towards-better-graph-representation-learning | 0.066 ± 0.002 |
masked-attention-is-all-you-need-for-graphs | 0.051 |
self-attention-in-colors-another-take-on | 0.056 |
graph-learning-with-1d-convolutions-on-random | 0.088 |
a-generalization-of-vit-mlp-mixer-to-graphs | 0.075 ± 0.001 |
from-primes-to-paths-enabling-fast-multi | 0.297 |
multi-mask-aggregators-for-graph-neural | 0.156 |
graph-inductive-biases-in-transformers | 0.059 |
an-experimental-study-of-the-transferability | 0.360 |
learning-long-range-dependencies-on-graphs | 0.065 ± 0.001 |
factorizable-graph-convolutional-networks | 0.366 |
substructure-aware-graph-neural-networks | 0.072±0.002 |
weisfeiler-and-lehman-go-cellular-cw-networks | 0.094 |
principal-neighbourhood-aggregation-for-graph | 0.142 |
graph-transformers-without-positional | 0.077 |
cin-enhancing-topological-message-passing | 0.074 |
topology-informed-graph-transformer | 0.057 |
recipe-for-a-general-powerful-scalable-graph | 0.070 ± 0.004 |
graph-learning-with-1d-convolutions-on-random | 0.101 |
graph-level-representation-learning-with | 0.434 |
ckgconv-general-graph-convolution-with | 0.059 |
cin-enhancing-topological-message-passing | 0.091 |
cin-enhancing-topological-message-passing | 0.077 |
weisfeiler-and-lehman-go-cellular-cw-networks | 0.079 |