HyperAI

Graph Property Prediction On Ogbg Code2

Metrics

Ext. data
Number of params
Test F1 score
Validation F1 score

Results

Performance results of various models on this benchmark

Model Name
Ext. data
Number of params
Test F1 score
Validation F1 score
Paper TitleRepository
GCNNo110332100.1507 ± 0.00180.1399 ± 0.0017Semi-Supervised Classification with Graph Convolutional Networks
GATNo110302100.1569 ± 0.00100.1442 ± 0.0017Graph Attention Networks
EGC-M (No Edge Features)No109860020.1595 ± 0.00190.1464 ± 0.0021Do We Need Anisotropic Graph Neural Networks?
SATNo157340000.1937 ± 0.00280.1773 ± 0.0023Structure-Aware Transformer for Graph Representation Learning
DAGNNNo352468140.1751 ± 0.00490.1607 ± 0.0040--
GMAN+bag of tricksNo636842900.1770 ± 0.00120.1631 ± 0.0090--
MPNN-Max (No Edge Features)No109715060.1552 ± 0.00220.1441 ± 0.0016Do We Need Anisotropic Graph Neural Networks?
GPSNo124540660.18940.1739 ± 0.001Recipe for a General, Powerful, Scalable Graph Transformer
DiffPool w/ graphSAGENo100958260.1401 ± 0.00120.1405 ± 0.0012Hierarchical Graph Representation Learning with Differentiable Pooling
SAT++ with Magnetic LaplacianNo143780690.2222 ± 0.00100.2044 ± 0.0020Transformers Meet Directed Graphs
GraphTrans (GCN-Virtual)No90532460.1830 ± 0.00240.1661 ± 0.0012--
PNA (No Edge Features)No109920500.1570 ± 0.00320.1453 ± 0.0025Do We Need Anisotropic Graph Neural Networks?
GIN+virtual nodeNo138418150.1581 ± 0.00260.1439 ± 0.0020How Powerful are Graph Neural Networks?
SAT++ with Magnetic LaplacianNo143780690.2222 ± 0.00320.2044 ± 0.0020--
GINNo123907150.1495 ± 0.00230.1376 ± 0.0016How Powerful are Graph Neural Networks?
EGC-S (No Edge Features)No111565300.1528 ± 0.00250.1427 ± 0.0020Do We Need Anisotropic Graph Neural Networks?
DAGformerNo149528820.2018 ± 0.00210.1846 ± 0.0010--
GraphTrans (GCN)No75637460.1751 ± 0.00150.1599 ± 0.0009--
GCN+virtual nodeNo124843100.1595 ± 0.00180.1461 ± 0.0013Semi-Supervised Classification with Graph Convolutional Networks
DAGNN--0.1751 ± 0.00490.1607 ± 0.0040Directed Acyclic Graph Neural Networks
0 of 21 row(s) selected.