Data To Text Generation
Data-to-Text Generation is a classic problem in the field of natural language processing, aiming to convert structured data into fluent and accurate natural language text. This task not only involves selecting appropriate content from the input data for description but also requires the use of surface realization techniques to generate natural and coherent expressions to meet the needs of different application scenarios, such as automatic report generation, weather forecasts, and news summaries.
AMR3.0
StructAdapt
Cleaned E2E NLG Challenge
DataTuner_FC
Czech Restaurant NLG
DART
self-mem + new data
E2E
self-mem + new data (random)
E2E NLG Challenge
S_1^R
GenWiki
MLB Dataset
Macro
MLB Dataset (Content Ordering)
Macro
MLB Dataset (Content Selection)
MLB Dataset (Relation Generation)
SeqPlan
MULTIWOZ 2.1
T5-Base
RotoWire
HierarchicalEncoder + NR + IR
RotoWire (Content Ordering)
Hierarchical Transformer Encoder + conditional copy
Rotowire (Content Selection)
Hierarchical Transformer Encoder + conditional copy
RotoWire (Relation Generation)
Macro
SR11Deep
Transition based Deep Input Linearization
ToTTo
T5-3B
ViGGO
DataTuner_FC
WebNLG
Control Prefixes (A1, T5-large)
WebNLG en
WebNLG Full
WebNLG ru
WikiOFGraph
T5-large
Wikipedia Person and Animal Dataset
XAlign