HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Data Augmentation
Data Augmentation On Imagenet
Data Augmentation On Imagenet
Metrics
Accuracy (%)
Results
Performance results of various models on this benchmark
Columns
Model Name
Accuracy (%)
Paper Title
DeiT-B (+MixPro)
82.9
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (DeepAA)
81.32
Deep AutoAugment
DeiT-S (+MixPro)
81.3
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (Fast AA)
80.6
Fast AutoAugment
ResNet-200 (UA)
80.4
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-200 (AA)
80.0
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (DeepAA)
78.30
Deep AutoAugment
ResNet-50 (TA wide)
78.07
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
ResNet-50 (LoRot-E)
77.72
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (LoRot-I)
77.71
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (UA)
77.63
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-50 (RA)
77.6
RandAugment: Practical automated data augmentation with a reduced search space
ResNet-50 (AA)
77.6
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (Fast AA)
77.6
Fast AutoAugment
ResNet-50 (DADA)
77.5
DADA: Differentiable Automatic Data Augmentation
ResNet-50 (Faster AA)
76.5
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
DeiT-T (+MixPro)
73.8
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
0 of 17 row(s) selected.
Previous
Next