HyperAI

Cross Modal Retrieval With Noisy 2

Metrics

Image-to-text R@1
Image-to-text R@10
Image-to-text R@5
R-Sum
Text-to-image R@1
Text-to-image R@10
Text-to-image R@5

Results

Performance results of various models on this benchmark

Comparison Table
Model NameImage-to-text R@1Image-to-text R@10Image-to-text R@5R-SumText-to-image R@1Text-to-image R@10Text-to-image R@5
learning-from-noisy-correspondence-with-tri76.298.395.8508.760.592.785.2
cross-modal-retrieval-with-noisy77.497.395.0502.358.789.884.1
ugncl-uncertainty-guided-noisy-correspondence78.497.895.8505.659.889.584.3
cross-modal-active-complementary-learning-177.998.395.4507.860.990.684.7
noisy-correspondence-learning-with-self79.597.994.2507.861.290.284.8
mitigating-noisy-correspondence-by78.397.894.6505.860.190.584.5
noisy-correspondence-learning-with-meta77.497.694.9501.959.689.283.2
nac-mitigating-noisy-correspondence-in-cross79.397.894.6507.160.890.184.5
learning-to-rematch-mismatched-pairs-for77.997.895.2503.859.889.583.6
learning-with-noisy-correspondence76.396.993.7498.958.489.883.8
bicro-noisy-correspondence-rectification-for78.197.594.4504.760.489.984.4
repair-rank-correlation-and-noisy-pair-half79.296.995.0504.459.489.584.4
recon-enhancing-true-correspondence-180.397.895.3511.861.691.385.5
learning-with-noisy-correspondence-for-cross75.097.593.9496.758.389.083.0
deep-evidential-learning-with-noisy77.597.093.8494.756.188.581.8
cross-modal-retrieval-with-partially74.296.991.8487.255.687.581.2