HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Colorectal Gland Segmentation:
Colorectal Gland Segmentation On Crag
Colorectal Gland Segmentation On Crag
Metrics
Dice
F1-score
Hausdorff Distance (mm)
Results
Performance results of various models on this benchmark
Columns
Model Name
Dice
F1-score
Hausdorff Distance (mm)
Paper Title
VF-CNN (C4)
0.721
0.711
318.9
Rotation equivariant vector field networks
VF-CNN (C8)
0.758
0.745
287.5
Rotation equivariant vector field networks
VF-CNN (C12)
0.782
0.776
251.9
Rotation equivariant vector field networks
FCN8 (e)
-
-
199.5
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net (e)
0.844
-
196.9
U-Net: Convolutional Networks for Biomedical Image Segmentation
G-CNN (C12)
0.834
0.818
192.2
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Steerable G-CNN (e)
0.848
0.811
175.9
Learning Steerable Filters for Rotation Equivariant CNNs
G-CNN (C4)
0.856
0.833
170.4
Group Equivariant Convolutional Networks
Steerable G-CNN (C12)
0.869
0.837
164.8
Learning Steerable Filters for Rotation Equivariant CNNs
G-CNN (C8)
0.866
0.837
157.4
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Steerable G-CNN (C12)
0.870
0.855
156.2
Learning Steerable Filters for Rotation Equivariant CNNs
MILD-Net (e)
0.883
0.869
146.2
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images
Steerable G-CNN (C8)
0.888
0.861
139.5
Learning Steerable Filters for Rotation Equivariant CNNs
DSF-CNN (C8)
0.891
0.874
138.4
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images
PatchCL
0.892
0.881
119.5
Pseudo-Label Guided Contrastive Learning for Semi-Supervised Medical Image Segmentation
0 of 15 row(s) selected.
Previous
Next