Cell Entity Annotation On Toughtables Wd
Metrics
F1 (%)
Results
Performance results of various models on this benchmark
Model Name | F1 (%) | Paper Title | Repository |
---|---|---|---|
Kepler-aSI | 62 | Kepler-aSI at SemTab 2021 | - |
JenTab | 45.7 | JenTab Meets SemTab 2021's New Challenges | |
DAGOBAH | 92.3 | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data | - |
s-elBat | 93.8 | Results of SemTab 2022 | - |
DAGOBAH | 94.5 | From Heuristics to Language Models: A Journey Through the Universe of Semantic Table Interpretation with DAGOBAH | - |
0 of 5 row(s) selected.