HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Camouflaged Object Segmentation
Camouflaged Object Segmentation On Camo
Camouflaged Object Segmentation On Camo
Metrics
MAE
S-Measure
Weighted F-Measure
Results
Performance results of various models on this benchmark
Columns
Model Name
MAE
S-Measure
Weighted F-Measure
Paper Title
BASNet
0.159
0.618
0.413
BASNet: Boundary-Aware Salient Object Detection
EGNet
0.104
0.732
0.583
EGNet: Edge Guidance Network for Salient Object Detection
SINet
0.100
0.751
0.606
Camouflaged Object Detection
PraNet
0.094
0.769
0.663
PraNet: Parallel Reverse Attention Network for Polyp Segmentation
MirrorNet-ResNeXt152
0.077
0.785
0.719
MirrorNet: Bio-Inspired Camouflaged Object Segmentation
SINet-V2
0.070
0.820
0.743
Concealed Object Detection
ZoomNeXt-ResNet-50
0.065
0.833
0.774
ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
EVPv1
0.059
0.846
0.777
Explicit Visual Prompting for Low-Level Structure Segmentations
EVPv2
0.058
0.848
0.786
Explicit Visual Prompting for Universal Foreground Segmentations
SAMFusion
0.0560
-
0.833
Improving existing segmentators performance with zero-shot segmentators
ZoomNeXt-PVTv2-B5
0.041
0.889
0.857
ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
ZoomNeXt-PVTv2-B4
0.04
0.888
0.859
ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection
BiRefNet
0.030
0.904
0.890
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
0 of 13 row(s) selected.
Previous
Next
Camouflaged Object Segmentation On Camo | SOTA | HyperAI