Breast Tumour Classification On Pcam
Metrics
Accuracy
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Accuracy |
---|---|
virchow-a-million-slide-digital-pathology | 0.933 |
learning-steerable-filters-for-rotation | - |
rotation-equivariant-vector-field-networks | - |
deep-residual-learning-for-image-recognition | - |
group-equivariant-convolutional-networks | - |
densely-connected-convolutional-networks | - |
roto-translation-equivariant-convolutional | - |
rotation-equivariant-vector-field-networks | - |
rotation-equivariant-vector-field-networks | - |
learning-steerable-filters-for-rotation | - |
deep-residual-learning-for-image-recognition | - |
rotation-equivariant-cnns-for-digital | - |
learning-steerable-filters-for-rotation | - |
learning-steerable-filters-for-rotation | - |
roto-translation-equivariant-convolutional | - |
dense-steerable-filter-cnns-for-exploiting | - |