HyperAI
HyperAI
Home
Console
Docs
News
Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
Terms of Service
Privacy Policy
English
HyperAI
HyperAI
Toggle Sidebar
Search the site…
⌘
K
Command Palette
Search for a command to run...
Console
Home
SOTA
Ad-Hoc Information Retrieval
Ad Hoc Information Retrieval On Trec Robust04
Ad Hoc Information Retrieval On Trec Robust04
Metrics
MAP
P@20
nDCG@20
Results
Performance results of various models on this benchmark
Columns
Model Name
MAP
P@20
nDCG@20
Paper Title
monoT5-3B (zero-shot)
0.3876
0.5165
0.6091
Document Ranking with a Pretrained Sequence-to-Sequence Model
PARADE(ELECTRA)
-
0.4604
0.5399
PARADE: Passage Representation Aggregation for Document Reranking
CEDR-KNRM
-
0.4667
0.5381
CEDR: Contextualized Embeddings for Document Ranking
PARADE(BERT)
-
0.4486
0.5252
PARADE: Passage Representation Aggregation for Document Reranking
BERT-MaxP
-
-
0.469
Deeper Text Understanding for IR with Contextual Neural Language Modeling
BERT-SumP
-
-
0.467
Deeper Text Understanding for IR with Contextual Neural Language Modeling
POSIT-DRMM-MV
0.271
0.389
0.464
Deep Relevance Ranking Using Enhanced Document-Query Interactions
Vanilla BERT
-
0.4042
0.4541
CEDR: Contextualized Embeddings for Document Ranking
NPRF-DRMM
0.2904
0.4064
0.4502
NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval
PACRR
0.258
0.374
0.445
Deep Relevance Ranking Using Enhanced Document-Query Interactions
BERT-FirstP
-
-
0.444
Deeper Text Understanding for IR with Contextual Neural Language Modeling
SNRM-PRF
0.2971
0.3948
0.4391
From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing
NPRF-KNRM
0.2846
0.3926
0.4327
NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval
DRMM
0.279
0.382
0.431
A Deep Relevance Matching Model for Ad-hoc Retrieval
SNRM
0.2856
0.3766
0.4310
From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing
KNRM
0.2464
0.3510
0.3989
NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information Retrieval
FNRM-Rank_Embed
0.2811
-
-
Neural Ranking Models with Weak Supervision
FNRM-RankProb_Embed
0.2837
-
-
Neural Ranking Models with Weak Supervision
Anserini BM25+RM3
0.302
0.4012
-
The Neural Hype and Comparisons Against Weak Baselines
BERT FT(Microblog)
0.3278
0.4287
-
Simple Applications of BERT for Ad Hoc Document Retrieval
0 of 21 row(s) selected.
Previous
Next
Ad Hoc Information Retrieval On Trec Robust04 | SOTA | HyperAI