HyperAI
HyperAI
Home
News
Latest Papers
Tutorials
Datasets
Wiki
SOTA
LLM Models
GPU Leaderboard
Events
Search
About
English
HyperAI
HyperAI
Toggle sidebar
Search the site…
⌘
K
Home
SOTA
6D Pose Estimation
6D Pose Estimation On Ycb Video 2
6D Pose Estimation On Ycb Video 2
Metrics
ADDS AUC
Results
Performance results of various models on this benchmark
Columns
Model Name
ADDS AUC
Paper Title
Repository
ICG
96.5
Iterative Corresponding Geometry: Fusing Region and Depth for Highly Efficient 3D Tracking of Textureless Objects
-
PoseCNN+ICP
93.0
PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
-
FFB6D
96.6
FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation
-
ICG+
97.9
Fusing Visual Appearance and Geometry for Multi-modality 6DoF Object Tracking
-
CMCL6D
95.43
Enhancing 6-DoF Object Pose Estimation through Multiple Modality Fusion: A Hybrid CNN Architecture with Cross-Layer and Cross-Modal Integration
DenseFusion
93.1
DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
-
MaskedFusion
93.3
MaskedFusion: Mask-based 6D Object Pose Estimation
-
PVN3D
96.1
PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation
-
se3-TrackNet
95.71
se(3)-TrackNet: Data-driven 6D Pose Tracking by Calibrating Image Residuals in Synthetic Domains
-
0 of 9 row(s) selected.
Previous
Next
6D Pose Estimation On Ycb Video 2 | SOTA | HyperAI