3D Multi Object Tracking On Waymo Open 1
Metrics
MOTA/L2
Results
Performance results of various models on this benchmark
Model Name | MOTA/L2 | Paper Title | Repository |
---|---|---|---|
REIDMOT3D | 0.5961 | - | - |
ImmortalTracker | 0.6055 | Immortal Tracker: Tracklet Never Dies | |
Trajectoryformer | 0.6573 | - | - |
OptMOT | 0.6218 | - | - |
MFMS_Track | 0.6314 | - | - |
RobMOT | 0.7466 | 0/1 Deep Neural Networks via Block Coordinate Descent | - |
HorizonMOT3D | 0.6407 | - | - |
InceptioLidar | 0.6558 | - | - |
SimpleTrack | 0.6018 | SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking | |
Fast-Poly | 0.6306 | - | - |
CenterPoint | 0.5938 | - | - |
CasTrack | 0.6366 | - | - |
BTT | 0.5949 | - | - |
CTRL_FSD_TTA | 0.7429 | FSD V2: Improving Fully Sparse 3D Object Detection with Virtual Voxels | |
YONTD_MOT | 0.6048 | - | - |
DRTracker | 0.6675 | - | - |
0 of 16 row(s) selected.