HyperAI

3D Instance Segmentation On S3Dis

Metrics

AP@50
mAP
mCov
mPrec
mRec
mWCov

Results

Performance results of various models on this benchmark

Comparison Table
Model NameAP@50mAPmCovmPrecmRecmWCov
softgroup-for-3d-instance-segmentation-on68.954.469.375.369.871.7
pointgroup-dual-set-point-grouping-for-3d64.0--69.669.2-
isbnet-a-3d-point-cloud-instance-segmentation70.560.874.977.577.176.8
3d-mpa-multi-proposal-aggregation-for-3d---66.764.1-
superpoint-transformer-for-3d-scene-instance69.2--74.071.1-
msta3d-multi-scale-twin-attention-for-3d-170.0--80.670.1-
oneformer3d-one-transformer-for-unified-point75.863.0-82.374.1-
learning-object-bounding-boxes-for-3d---65.647.6-
191209654--54.166.953.958
hierarchical-aggregation-for-3d-instance--67.073.269.470.4
partnet-a-recursive-part-decomposition----43.4%-
divide-and-conquer-3d-point-cloud-instance70.659.5----
saso-joint-3d-semantic-instance-segmentation--54.564.250.858.3
top-down-beats-bottom-up-in-3d-instance70.458.1----
maskgroup-hierarchical-point-grouping-and69.9--66.669.6-
associatively-segmenting-instances-and---63.647.5-
pointcnn-convolution-on-mathcalx-transformed------
mask3d-for-3d-semantic-instance-segmentation75.564.5----
learning-gaussian-instance-segmentation-in---68.550.8-
3d-instances-as-1d-kernels--70.375.371.172.8
instance-segmentation-in-3d-scenes-using67.854.1-73.573.4-