3D Human Pose Estimation On 3Dpw
Metrics
Acceleration Error
MPJPE
MPVPE
PA-MPJPE
Results
Performance results of various models on this benchmark
Comparison Table
Model Name | Acceleration Error | MPJPE | MPVPE | PA-MPJPE |
---|---|---|---|---|
live-stream-temporally-embedded-3d-human-body | 11.4 | 84.6 | 100.3 | 52.3 |
beyond-static-features-for-temporally | 7 | 95 | 111.5 | 55.8 |
self-attentive-3d-human-pose-and-shape | 77.9 | 85.8 | 100.6 | 50.4 |
learning-to-regress-bodies-from-images-using-1 | - | 85.7 | 99.5 | 51.7 |
predicting-camera-viewpoint-improves-cross | - | 89.7 | - | 65.2 |
xformer-fast-and-accurate-monocular-3d-body | - | 75 | 87.1 | 45.7 |
temporal-aware-refinement-for-video-based | 7.7 | 62.7 | 74.4 | 40.6 |
back-to-optimization-diffusion-based-zero | - | 69.7 | - | 40.3 |
pose2pose-3d-positional-pose-guided-3d | - | - | - | 54.4 |
learning-3d-human-pose-from-structure-and | - | - | - | 92.2 |
wham-reconstructing-world-grounded-humans | - | 57.8 | 68.7 | 35.9 |
deciwatch-a-simple-baseline-for-10x-efficient | - | 75.5 | - | 46.4 |
3d-human-mesh-estimation-from-virtual-markers-1 | - | 67.5 | 77.9 | 41.3 |
learning-to-reconstruct-3d-human-pose-and | - | 96.9 | 116.4 | 59.2 |
a-lightweight-graph-transformer-network-for | - | 88.5 | 106.2 | 58.9 |
capturing-the-motion-of-every-joint-3d-human | 16.5 | 75.6 | 87.9 | 42 |
3dhr-co-a-collaborative-test-time-refinement | - | 63.72 | - | 42.11 |
probabilistic-modeling-for-human-mesh | - | - | - | 65 |
global-to-local-modeling-for-video-based-3d | 6.6 | 80.7 | 96.3 | 50.6 |
back-to-optimization-diffusion-based-zero | - | 80.9 | - | 42.6 |
out-of-domain-human-mesh-reconstruction-via | - | 65.5 | 82 | 40.4 |
pc-hmr-pose-calibration-for-3d-human-mesh | - | 87.8 | 108.6 | 66.9 |
hulk-a-universal-knowledge-translator-for | - | 67 | 79.8 | 39.9 |
capturing-humans-in-motion-temporal-attentive | 7.4 | 84.3 | 99.7 | 52.1 |
not-all-tokens-are-equal-human-centric-visual | - | 80.6 | - | 49.3 |
arts-semi-analytical-regressor-using | 6.5 | 67.7 | 81.4 | 46.5 |
ddt-a-diffusion-driven-transformer-based | 6.6 | 85.9 | 101.2 | 53.3 |
spec-seeing-people-in-the-wild-with-an | - | - | - | 53.2 |
probabilistic-3d-human-shape-and-pose | - | 90.9 | - | 61 |
mesh-graphormer | - | 74.7 | 87.7 | 45.6 |
3dcrowdnet-2d-human-pose-guided3d-crowd-human | - | 85.8 | 108.5 | 55.8 |
pliks-a-pseudo-linear-inverse-kinematic | - | 60.5 | 73.3 | 38.5 |
mug-multi-human-graph-network-for-3d-mesh | - | 87 | 106.2 | 60.5 |
pymaf-x-towards-well-aligned-full-body-model | - | 74.2 | 87.0 | 45.3 |
occluded-human-mesh-recovery | - | 89.7 | 107.1 | 58.3 |
sefd-learning-to-distill-complex-pose-and | - | 77.37 | 92.60 | 49.39 |
non-local-latent-relation-distillation-for-1 | - | - | - | 72.1 |
thundr-transformer-based-3d-human | - | 74.8 | - | 51.5 |
spatio-temporal-tendency-reasoning-for-human | 6.9 | 85.2 | 101.2 | 52.4 |
accurate-3d-body-shape-regression-using-1 | - | 95.2 | - | 62.6 |
kinematic-aware-hierarchical-attention | 6.8 | 77.1 | - | - |
learning-unorthogonalized-matrices-for | - | 67.6 | 79.2 | 42.0 |
pose2mesh-graph-convolutional-network-for-3d | 22.6 | 88.9 | 106.3 | 58.3 |
3d-human-pose-estimation-using-spatio-1 | - | - | - | 71.8 |
mpt-mesh-pre-training-with-transformers-for | - | 65.9 | 79.4 | 42.8 |
weakly-supervised-3d-human-pose-and-shape | - | 80.2 | - | 49.8 |
cross-attention-of-disentangled-modalities | - | 73.5 | 84.1 | 44.6 |
beyond-static-features-for-temporally | 7.1 | 86.5 | 102.9 | 52.7 |
3d-human-motion-estimation-via-motion | 11.6 | 86.9 | - | 54.7 |
multi-hmr-multi-person-whole-body-human-mesh | - | 61.4 | 75.9 | 41.7 |
smpler-x-scaling-up-expressive-human-pose-and | - | 75.2 | - | - |
ivt-an-end-to-end-instance-guided-video | - | - | - | 46 |
multi-person-3d-pose-and-shape-estimation-via | - | 66.0 | 76.3 | 39.0 |
zolly-zoom-focal-length-correctly-for | - | 65 | 76.3 | 39.8 |
unihpe-towards-unified-human-pose-estimation | - | - | - | 65.7 |
posenet3d-unsupervised-3d-human-shape-and | - | - | - | 63.2 |
3d-human-reconstruction-in-the-wild-with-1 | - | 65.2 | 76.8 | 41.9 |
ponet-robust-3d-human-pose-estimation-via | - | - | - | 76.2 |
learning-local-recurrent-models-for-human | 15.6 | 81.7 | 93.6 | 51.2 |
bilevel-online-adaptation-for-out-of-domain | - | 77.2 | 91.2 | 49.5 |
motionbert-unified-pretraining-for-human | - | 68.8 | 79.4 | 40.6 |
multi-initialization-optimization-network-for | - | 81.98 | - | 52.34 |
sampling-is-matter-point-guided-3d-human-mesh-1 | - | 73.9 | 85.5 | 44.9 |
humaniflow-ancestor-conditioned-normalising | - | 83.9 | - | 53.4 |
beyond-weak-perspective-for-monocular-3d | - | 83.2 | - | 59.7 |
ikol-inverse-kinematics-optimization-layer | - | 71.1 | 84.1 | 44.5 |
neural-descent-for-visual-3d-human-pose-and | - | 81.4 | - | 57.5 |
occluded-human-body-capture-with-self | - | 83.7 | 110.1 | 51.7 |
leveraging-mocap-data-for-human-mesh-recovery | 8.3 | 89.4 | 103.8 | 52.9 |
bopr-body-aware-part-regressor-for-human | - | 65.4 | 80.8 | 42.5 |
hulk-a-universal-knowledge-translator-for | - | 66.3 | 77.4 | 38.5 |
tape-temporal-attention-based-probabilistic | 8.9 | 79.9 | 98.1 | 51.5 |
3d-human-reconstruction-in-the-wild-with-1 | - | 87.3 | 102.1 | 52.7 |
hybrik-x-hybrid-analytical-neural-inverse | - | 71.6 | 82.3 | 41.8 |
probabilistic-modeling-for-human-mesh | - | - | - | 55.1 |
cyclic-test-time-adaptation-on-monocular | - | 64.7 | 76.7 | 39.9 |
end-to-end-human-pose-and-mesh-reconstruction | - | 77.1 | 88.2 | 47.9 |
remocap-disentangled-representation-learning | - | 72.7 | 81.9 | 44.1 |
deformable-mesh-transformer-for-3d-human-mesh | - | 72.9 | 82.6 | 44.3 |
genhmr-generative-human-mesh-recovery | - | 68.1 | 77.5 | 42.1 |
cliff-carrying-location-information-in-full | - | 69 | 81.2 | 43 |
kama-3d-keypoint-aware-body-mesh-articulation | - | - | 97.0 | 51.1 |
w-hmr-human-mesh-recovery-in-world-space-with | - | 64.6 | 75.7 | 40.5 |
synthetic-training-for-accurate-3d-human-pose | - | - | - | 66.8 |
dual-networks-based-3d-multi-person-pose | - | - | - | 61.7 |
one-stage-3d-whole-body-mesh-recovery-with | - | 74.7 | - | 45.1 |
on-self-contact-and-human-pose | - | 84.9 | - | 55.5 |
hybridcap-inertia-aid-monocular-capture-of | - | 72.1 | - | - |
hybrik-a-hybrid-analytical-neural-inverse | - | 74.1 | 86.5 | 45.0 |
frankmocap-a-monocular-3d-whole-body-pose | - | 94.3 | - | 60 |
postometro-pose-token-enhanced-mesh | - | 68.4 | 78.0 | 40.8 |
pare-part-attention-regressor-for-3d-human | - | 74.5 | 88.6 | 46.5 |
smpler-taming-transformers-for-monocular-3d | - | 73.7 | 82 | 43.4 |
vibe-video-inference-for-human-body-pose-and | 23.4 | 82.9 | 99.1 | 51.9 |
encoder-decoder-with-multi-level-attention | 17.6 | 79.1 | 92.6 | 45.7 |
postometro-pose-token-enhanced-mesh | - | 67.7 | 76.8 | 39.8 |
unihpe-towards-unified-human-pose-estimation | - | - | - | 51.6 |
3d-human-shape-and-pose-from-a-single-low | - | 96.36 | - | 58.98 |
psvt-end-to-end-multi-person-3d-pose-and | - | 73.1 | 84 | 43.5 |
keep-it-smpl-automatic-estimation-of-3d-human | - | - | - | 106.8 |
potter-pooling-attention-transformer-for | - | 75 | 87.4 | 44.8 |
biopose-biomechanically-accurate-3d-pose | - | 69.0 | 79.8 | 39.5 |
probabilistic-modeling-for-human-mesh | - | - | - | 59.9 |
graph-and-temporal-convolutional-networks-for | - | - | - | 64.2 |
learning-3d-human-shape-and-pose-from-dense | - | 85.5 | - | 54.8 |
monocular-expressive-body-regression-through | - | 93.4 | - | 60.7 |
end-to-end-recovery-of-human-shape-and-pose | 37.4 | 130.0 | - | - |
hierarchical-kinematic-probability | - | 84.9 | - | 53.6 |
lasor-learning-accurate-3d-human-pose-and | - | - | - | 57.9 |
motionbert-unified-pretraining-for-human | - | 76.9 | 88.1 | 47.2 |
multi-view-matching-mvm-facilitating-multi | - | - | - | 78.2 |
trace-5d-temporal-regression-of-avatars-with-1 | - | 79.1 | 97.3 | 37.8 |
staf-3d-human-mesh-recovery-from-video-with | 8.2 | 80.6 | 95.3 | 48.0 |
a-simple-yet-effective-baseline-for-3d-human | - | - | - | 157.0 |
meev-body-mesh-estimation-on-egocentric-video | - | 81.74 | - | - |
cyclic-test-time-adaptation-on-monocular | - | 84.4 | 99.9 | 51.1 |
poseaug-a-differentiable-pose-augmentation | - | - | - | 73.2 |
instance-aware-contrastive-learning-for | - | 73.2 | 80.3 | 44.3 |
exploiting-temporal-context-for-3d-human-pose | - | - | - | 72.2 |
kinematic-aware-hierarchical-attention | 8 | 74.6 | - | - |
metrabs-metric-scale-truncation-robust | - | 68.8 | - | 49.7 |
implicit-3d-human-mesh-recovery-using-1 | - | 74.3 | 87.1 | 45.4 |
i2l-meshnet-image-to-lixel-prediction-network-1 | 30.9 | 93.2 | 110.1 | 58.6 |
hybrik-transformer | - | 71.6 | 83.6 | 42.3 |
deep-two-stream-video-inference-for-human | 11 | 76.7 | 93.5 | 50.3 |
tokenhmr-advancing-human-mesh-recovery-with-a | - | 71 | 84.6 | 44.3 |
posetriplet-co-evolving-3d-human-pose | - | 115 | - | 69.5 |
heater-an-efficient-and-unified-network-for | - | 73.4 | 86.9 | 45.9 |
sefd-learning-to-distill-complex-pose-and | - | 64.75 | 78.36 | 43.79 |
decomposed-human-motion-prior-for-video-pose | 17.1 | 89.4 | 112.6 | 51.4 |
heuristic-weakly-supervised-3d-human-pose | - | - | - | 66.1 |
centerhmr-a-bottom-up-single-shot-method-for | - | 76.7 | 93.4 | 47.3 |
humans-in-4d-reconstructing-and-tracking | - | 69.8 | 82.2 | 44.4 |
learning-3d-human-dynamics-from-video | 15.2 | 116.5 | - | 72.6 |
exemplar-fine-tuning-for-3d-human-pose | - | - | - | 51.6 |
blanketgen-a-synthetic-blanket-occlusion | - | - | - | 53.96 |
inference-stage-optimization-for-cross | - | - | - | 75.8 |
thundr-transformer-based-3d-human | - | 86.8 | - | 59.9 |
human-mesh-recovery-from-monocular-images-via | - | - | - | 69.5 |
body-meshes-as-points | - | 104.1 | 119.3 | 63.8 |
niki-neural-inverse-kinematics-with | - | 71.3 | 86.6 | 40.6 |
3d-human-pose-and-shape-regression-with | - | 92.8 | 110.1 | 58.9 |