HyperAIHyperAI
16 days ago

CAE: Mechanism to Diminish the Class Imbalanced in SLU Slot Filling Task

{Nguyen Le Minh, Tung Le, Nguyen Minh Phuong}
Abstract

Spoken Language Understanding (SLU) task is a wide application task in Natural Language Processing. In the success of the pre-trained BERT model, NLU is addressed by Intent Classification and Slot Filling task with significant improvement performance. However, classed imbalance problem in NLU has not been carefully investigated, while this problem in Semantic Parsing datasets is frequent. Therefore, this work focuses on diminishing this problem. We proposed a BERT-based architecture named JointBERT Classify Anonymous Entity (JointBERT-CAE) that improves the performance of the system on three Semantic Parsing datasets ATIS, Snips, ATIS Vietnamese, and a well-known Named Entity Recognize (NER) dataset CoNLL2003. In JointBERT-CAE architecture, we use multitask joint-learning to split conventional Slot Filling task into two sub-task, detect Anonymous Entity by Sequence tagging and Classify recognized anonymous entities tasks. The experimental results show the solid improvement of JointBERT-CAE when compared with BERT on all datasets, as well as the wide applicable capacity to other NLP tasks using the Sequence Tagging technique.